LaneGCN:基于车道图表示学习的运动预测
2024-10-10 18:40:24作者:滑思眉Philip
项目介绍
LaneGCN 是一个用于运动预测的先进开源项目,由 Ming Liang、Bin Yang 等人在多伦多大学开发。该项目在 Argoverse 运动预测竞赛中取得了第一名的成绩,并被选为 ECCV 2020 的口头报告。LaneGCN 通过学习车道图表示,能够有效地预测车辆和行人的未来运动轨迹,为自动驾驶和智能交通系统提供了强大的技术支持。
项目技术分析
LaneGCN 的核心技术在于其独特的车道图表示学习方法。通过构建车道图网络,项目能够捕捉到复杂的道路结构和车辆之间的交互关系。具体来说,LaneGCN 使用了图卷积网络(GCN)来处理车道图数据,并通过多层图卷积操作来提取车道之间的空间特征。此外,项目还结合了时间序列信息,进一步提升了预测的准确性。
项目及技术应用场景
LaneGCN 的技术可以广泛应用于自动驾驶、智能交通系统、城市规划等领域。具体应用场景包括:
- 自动驾驶:通过预测周围车辆和行人的运动轨迹,自动驾驶系统可以做出更安全的决策。
- 交通管理:在智能交通系统中,LaneGCN 可以帮助优化交通流量,减少拥堵。
- 城市规划:通过分析车辆和行人的运动模式,城市规划者可以更好地设计道路和交通设施。
项目特点
- 高性能:LaneGCN 在 Argoverse 运动预测竞赛中取得了第一名,证明了其卓越的性能。
- 易于使用:项目提供了详细的安装和使用指南,用户可以轻松上手。
- 灵活性:支持多 GPU 训练,用户可以根据需求选择不同的训练配置。
- 开源:项目完全开源,用户可以自由修改和扩展代码。
如何使用
安装依赖
首先,您需要安装以下依赖包:
- PyTorch >= 1.3.1
- Argoverse API
您可以使用 Anaconda 或 pip 来安装这些依赖。以下是一个使用 Anaconda 的示例:
conda create --name lanegcn python=3.7
conda activate lanegcn
conda install pytorch==1.5.1 torchvision cudatoolkit=10.2 -c pytorch
pip install git+https://github.com/argoai/argoverse-api.git
pip install scikit-image IPython tqdm ipdb
数据准备
您可以使用提供的脚本来下载和准备数据:
bash get_data.sh
训练模型
推荐使用 Horovod 进行多 GPU 训练:
horovodrun -np 4 -H localhost:4 python /path/to/train.py -m lanegcn
测试模型
您可以下载预训练模型并进行测试:
python test.py -m lanegcn --weight=/absolute/path/to/36.000.ckpt --split=test
结论
LaneGCN 是一个强大的运动预测工具,适用于多种应用场景。无论您是研究者还是开发者,都可以通过使用 LaneGCN 来提升您的项目性能。欢迎加入我们的开源社区,共同推动自动驾驶和智能交通技术的发展!
参考文献
如果您使用了我们的代码,请考虑引用以下文献:
@InProceedings{liang2020learning,
title={Learning lane graph representations for motion forecasting},
author={Liang, Ming and Yang, Bin and Hu, Rui and Chen, Yun and Liao, Renjie and Feng, Song and Urtasun, Raquel},
booktitle = {ECCV},
year={2020}
}
如有任何问题,请在 GitHub 上提交 issue,并联系 @chenyuntc。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17