LaneGCN:基于车道图表示学习的运动预测
2024-10-10 18:18:19作者:滑思眉Philip
项目介绍
LaneGCN 是一个用于运动预测的先进开源项目,由 Ming Liang、Bin Yang 等人在多伦多大学开发。该项目在 Argoverse 运动预测竞赛中取得了第一名的成绩,并被选为 ECCV 2020 的口头报告。LaneGCN 通过学习车道图表示,能够有效地预测车辆和行人的未来运动轨迹,为自动驾驶和智能交通系统提供了强大的技术支持。
项目技术分析
LaneGCN 的核心技术在于其独特的车道图表示学习方法。通过构建车道图网络,项目能够捕捉到复杂的道路结构和车辆之间的交互关系。具体来说,LaneGCN 使用了图卷积网络(GCN)来处理车道图数据,并通过多层图卷积操作来提取车道之间的空间特征。此外,项目还结合了时间序列信息,进一步提升了预测的准确性。
项目及技术应用场景
LaneGCN 的技术可以广泛应用于自动驾驶、智能交通系统、城市规划等领域。具体应用场景包括:
- 自动驾驶:通过预测周围车辆和行人的运动轨迹,自动驾驶系统可以做出更安全的决策。
- 交通管理:在智能交通系统中,LaneGCN 可以帮助优化交通流量,减少拥堵。
- 城市规划:通过分析车辆和行人的运动模式,城市规划者可以更好地设计道路和交通设施。
项目特点
- 高性能:LaneGCN 在 Argoverse 运动预测竞赛中取得了第一名,证明了其卓越的性能。
- 易于使用:项目提供了详细的安装和使用指南,用户可以轻松上手。
- 灵活性:支持多 GPU 训练,用户可以根据需求选择不同的训练配置。
- 开源:项目完全开源,用户可以自由修改和扩展代码。
如何使用
安装依赖
首先,您需要安装以下依赖包:
- PyTorch >= 1.3.1
- Argoverse API
您可以使用 Anaconda 或 pip 来安装这些依赖。以下是一个使用 Anaconda 的示例:
conda create --name lanegcn python=3.7
conda activate lanegcn
conda install pytorch==1.5.1 torchvision cudatoolkit=10.2 -c pytorch
pip install git+https://github.com/argoai/argoverse-api.git
pip install scikit-image IPython tqdm ipdb
数据准备
您可以使用提供的脚本来下载和准备数据:
bash get_data.sh
训练模型
推荐使用 Horovod 进行多 GPU 训练:
horovodrun -np 4 -H localhost:4 python /path/to/train.py -m lanegcn
测试模型
您可以下载预训练模型并进行测试:
python test.py -m lanegcn --weight=/absolute/path/to/36.000.ckpt --split=test
结论
LaneGCN 是一个强大的运动预测工具,适用于多种应用场景。无论您是研究者还是开发者,都可以通过使用 LaneGCN 来提升您的项目性能。欢迎加入我们的开源社区,共同推动自动驾驶和智能交通技术的发展!
参考文献
如果您使用了我们的代码,请考虑引用以下文献:
@InProceedings{liang2020learning,
title={Learning lane graph representations for motion forecasting},
author={Liang, Ming and Yang, Bin and Hu, Rui and Chen, Yun and Liao, Renjie and Feng, Song and Urtasun, Raquel},
booktitle = {ECCV},
year={2020}
}
如有任何问题,请在 GitHub 上提交 issue,并联系 @chenyuntc。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5