ntopng项目中的端口扫描告警功能实现解析
背景与需求分析
在网络安全监控领域,端口扫描是一种常见的前期探测行为,攻击者通过扫描目标系统的开放端口来识别潜在的攻击入口。ntopng作为一款专业的网络流量分析工具,需要具备检测此类可疑活动的能力。
传统检测方法存在对FTP_DATA等使用动态端口的协议产生误报的问题,这要求实现方案必须能够智能区分正常的多端口使用和恶意的端口扫描行为。
技术实现方案
ntopng团队基于ClickHouse存储的流量数据,设计并实现了一套端口扫描检测机制。该方案主要包含以下几个关键技术点:
-
数据源选择:利用ClickHouse中存储的历史流量数据(flows表)作为分析基础,相比实时流量分析,这种方式能够降低系统负载,同时提供更全面的分析视角。
-
检测算法设计:
- 基于时间窗口的端口访问频率统计
- 协议类型识别与白名单机制
- 源IP行为模式分析
-
误报处理机制:
- 针对FTP_DATA等使用动态端口的协议设置特殊处理规则
- 建立协议-端口使用模式数据库,识别正常的多端口使用行为
实现细节
该功能的实现参考了项目历史提交3175210中的类似告警机制,但针对端口扫描场景进行了专门优化:
-
查询设计:构建高效的ClickHouse查询语句,从海量流量数据中快速提取可疑的端口扫描模式。
-
告警触发条件:
- 单一源IP在短时间内访问多个不同端口
- 排除已知的正常多端口使用协议
- 考虑目标IP的分布特征(是否针对单一目标)
-
性能优化:通过预聚合和索引技术确保查询效率,避免对系统性能造成显著影响。
实际应用价值
该功能的实现为网络管理员提供了以下价值:
-
早期威胁检测:能够在攻击者进行初步侦查时就发现异常行为,为防御争取时间。
-
减少误报:通过协议识别和动态端口处理,显著降低了传统检测方法的高误报率问题。
-
历史分析能力:基于存储的流量数据,不仅支持实时检测,还能进行历史数据分析,发现潜伏的扫描行为。
未来优化方向
虽然当前实现已能满足基本需求,但仍有一些潜在的优化空间:
-
机器学习集成:引入机器学习算法,自动学习网络正常行为模式,进一步提高检测准确率。
-
关联分析:将端口扫描告警与其他安全事件关联,构建更全面的威胁画像。
-
自适应阈值:根据网络规模和历史数据,动态调整检测阈值,适应不同网络环境。
这一功能的实现体现了ntopng项目对网络安全监控需求的深刻理解和技术创新能力,为使用者提供了更强大的网络异常行为检测能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00