首页
/ 告别模糊!Anime4K让你的本地播放器秒变高清影院

告别模糊!Anime4K让你的本地播放器秒变高清影院

2026-02-05 05:39:24作者:丁柯新Fawn

你是否还在忍受低画质动漫带来的糟糕观看体验?那些模糊的线条、色块和细节丢失,是不是让你对喜爱的动漫失去了兴趣?现在,有了Anime4K,这些问题都将迎刃而解。Anime4K是一款高质量的实时动漫视频升频器,它能让你在本地播放器中实时享受到高清的动漫画面。读完本文,你将了解Anime4K的基本情况、不同版本的特点、安装方法以及效果对比,让你轻松打造属于自己的高清动漫影院。

Anime4K是一套开源的高质量实时动漫升频/降噪算法,可以用任何编程语言实现。它的简单性和速度让用户能够实时观看升频后的动漫,秉持着保护原始内容并为所有动漫爱好者促进选择自由的理念。重新编码动漫为4K应该避免,因为这是不可逆的,可能会通过引入伪像损坏原始内容,占用多达O(n²)的磁盘空间,更重要的是,这样做不会有任何有意义的熵减少(丢失的信息就是丢失了)。

Anime4K针对原生1080p使用h.264、h.265或VC-1编码的动漫进行了优化。即使它可能在其他情况下工作,但它并非针对降频的720p、480p或标清动漫(如DVD)进行优化。较旧的动漫(尤其是数字时代之前制作的)有非常难以去除的伪像,例如不良的去隔行、制作过程中的相机模糊、严重的振铃、胶片颗粒、较旧的MPEG压缩伪像等。它也不能替代SRGAN,因为SRGAN在低分辨率图像或有大量退化的图像上表现更好(尽管不是实时的)。Anime4K提供的是一种实时将1080p动漫升频到4K屏幕的方法,同时提供与SRGAN类似的效果,并且比waifu2x好得多(参见比较)。目前,正在研究针对更低分辨率或更旧内容的更好实时升频方法。

v4.1低分辨率实验

360p -> 4K的实验性SRGAN着色器结果:(放大查看细节)

图像按算法速度排序,双三次是最快的。FSRCNNX和Anime4K是实时的,而waifu2xReal-ESRGAN不是。 Magia_360p_4K Higurashi_360p_4K

v4版本特点

我们引入了一种线条重建算法,旨在解决1080p动漫中出现的分布偏移问题。在实际应用中,由于预算和时间限制,动漫合成质量较低,导致出现了惊人的方差,传统的超分辨率算法无法处理。GAN可以隐式地编码这种分布偏移,但使用速度慢且难以训练。我们的算法显式地纠正了这种分布偏移,并允许传统的“MSE”SR算法处理各种动漫。

来源:https://fancaps.net/anime/picture.php?/14728493 | 模式B
Maxed

来源:https://fancaps.net/anime/picture.php?/13365760 | 模式A
Slime

性能数据是使用Vega64 GPU获得的,并使用UL着色器变体进行测试。快速版本适用于M变体。 请注意,使用张量核心的CUDA加速SRGANs/Waifu2x可以快得多,接近实时(~80ms),但它们的大尺寸严重阻碍了非CUDA实现。

v3版本特点

将整体的Anime4K着色器分解为模块化组件,允许针对特定类型的动漫和/或个人口味进行自定义。

新功能包括:

  • 对算法进行了全面改革,以提高速度、质量和效率。
  • 实时、高质量的线条艺术CNN升频器。(6种变体)
  • 线条艺术去模糊着色器。("盲反卷积"和DTD着色器)
  • 降噪算法。(双边模式和CNN变体)
  • 盲重采样伪像减少算法。(用于重采样质量差的动漫。)
  • 实验性线条变暗和线条变薄算法。(为了感知质量。我们认为更细/更暗的线条在感知上质量更高,即使事实可能并非如此。)

有关每个着色器的更多信息(已过时)

安装说明

Windows

Linux

Mac

相关项目

以下是一些使用Anime4K的项目:

  • https://github.com/Blinue/Magpie(适用于Windows 10/11的通用GUI升频器)
  • https://github.com/imxieyi/Anime4KMetal(基于Metal的Apple平台Anime4K)
  • https://github.com/mikigal/Anime4K-GUI(基于Anime4K的GUI应用程序,允许将升频后的视频保存到磁盘)
  • https://colab.research.google.com/drive/11xAn4fyAUJPZOjrxwnL2ipl_1DGGegkB(在PyTorch中重新实现的Anime4K)

请注意,以下项目可能使用的是过时版本的Anime4K。自v3以来,质量有了显著改进。

  • https://github.com/yeataro/TD-Anime4K(适用于TouchDesigner的Anime4K)
  • https://github.com/keijiro/UnityAnime4K(适用于Unity的Anime4K)
  • https://github.com/net2cn/Anime4KSharp(在C#中重新实现的Anime4K)
  • https://github.com/andraantariksa/Anime4K-rs(在Rust中重新实现的Anime4K)
  • https://github.com/TianZerL/Anime4KCPP(Anime4K及更多算法在C++中的实现)
  • https://github.com/k4yt3x/video2x(动漫视频升频管道)
  • https://github.com/Anime4KWebBoost/Anime4K-WebGPU(适用于WebGPU的Anime4K)

鸣谢

OpenCV TensorFlow Keras Torch mpv MPC
OpenCV TensorFlow Keras Torch mpv MPC

非常感谢OpenCVTensorFlowKerasTorch团队及其贡献者。没有高质量的开源机器学习库的存在,这个项目是不可能实现的。

我还要特别感谢VDSRFSRCNN的创建者,以及开源项目waifu2xFSRCNNX,是他们激发了我创建这个项目的兴趣。我还要感谢mpvMPC-HC/BE的贡献者,他们努力创建了具有无尽自定义选项的优秀媒体播放器。 此外,我要感谢以任何形式为这个项目做出贡献的人,无论是报告错误、提交建议、帮助解决他人的问题还是提交代码。我将永远高度尊重你们。

我还要向蒙特利尔大学DIROLIGUMMILA的人们表示诚挚的感谢,感谢他们为学生(包括我)提供了如此多的机会,提供了必要的基础设施,并营造了良好的学习环境。

我还要感谢开源社区,其中各种具体的例子和代码提供了巨大的帮助。

最后,同样重要的是,非常感谢我的家人、朋友和教授在这些困难时期为我持续的学习之旅提供了经济、技术、社会支持和专业知识。你们的帮助真的难以言表。

此列表不是最终的,因为项目远未完成。任何未来的致谢都将及时添加。

登录后查看全文
热门项目推荐
相关项目推荐