Kubernetes Descheduler中节点亲和性策略的潜在问题分析
问题背景
Kubernetes Descheduler是一个用于重新平衡集群工作负载的工具,它通过驱逐不符合特定策略的Pod来优化集群资源分配。其中一项重要策略是"RemovePodsViolatingNodeAffinity",该策略会驱逐违反节点亲和性规则的Pod。
问题现象
在实际使用中发现,当Pod配置了preferredDuringSchedulingIgnoredDuringExecution
类型的节点亲和性时,如果目标节点资源不足但其他节点资源充足,Descheduler可能会出现持续驱逐Pod的问题。具体表现为:
- Pod被调度到非首选节点
- Descheduler检测到Pod未运行在首选节点上
- Descheduler驱逐该Pod
- 由于首选节点资源不足,Pod又被调度回原来的非首选节点
- 这个过程会无限循环
技术分析
问题的核心在于Descheduler的节点亲和性检查逻辑。当前实现中,GetBestNodeWeightGivenPodPreferredAffinity
函数会考虑所有节点(包括资源不足的节点)来计算最佳权重,而PodFitsAnyNode
函数只检查Pod是否能被调度到任意节点。
这种不一致导致即使首选节点资源不足,只要其他节点有足够资源,Descheduler仍会认为Pod应该被驱逐到首选节点。但实际上由于资源限制,Pod无法被调度到首选节点,从而形成无限驱逐循环。
解决方案探讨
一种可行的解决方案是修改过滤逻辑,在计算最佳权重时只考虑那些Pod能够实际运行的节点(即资源充足的节点)。具体实现可以:
- 首先筛选出所有Pod能够运行的节点
- 在这些节点中计算最佳权重
- 只有当当前节点的权重低于这些"可运行节点"中的最佳权重时才进行驱逐
这种修改确保了Descheduler不会因为理论上的最佳节点(但实际不可用)而持续驱逐Pod,从而避免了无限循环的问题。
影响评估
这个问题主要影响以下场景:
- 使用
preferredDuringSchedulingIgnoredDuringExecution
节点亲和性的工作负载 - 集群中存在资源不足的首选节点
- 启用了节点亲和性检查的Descheduler策略
对于生产环境,这个问题可能导致Pod频繁重启,影响服务稳定性。建议在使用节点亲和性策略时仔细评估Descheduler的配置,或者在发现问题时暂时禁用相关策略。
最佳实践建议
为了避免类似问题,建议:
- 在使用节点亲和性时,确保首选节点有足够的资源容量
- 监控Descheduler的驱逐行为,及时发现异常模式
- 考虑使用资源配额和限制来防止节点过载
- 在测试环境中验证Descheduler策略的效果后再应用到生产环境
通过合理配置和监控,可以充分发挥Descheduler优化集群资源分配的优势,同时避免潜在的问题。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









