CF-STATS 项目使用教程
1. 项目介绍
CF-STATS 是一个基于 GitHub Actions 的实时 Codeforces 活动统计卡片和徽章生成器。它可以帮助用户在 GitHub 个人资料的 README 文件中展示 Codeforces 的统计数据,包括解决的问题数量、特定评分的题目数量等。该项目通过 GitHub Actions 自动更新统计数据,并生成 SVG 格式的卡片,方便用户嵌入到自己的 GitHub 个人资料中。
2. 项目快速启动
2.1 克隆项目
首先,克隆 CF-STATS 项目到本地:
git clone https://github.com/sudiptob2/cf-stats.git
cd cf-stats
2.2 配置环境变量
进入 config/ 目录,编辑 env_template 文件,将 CF_HANDLE 键的值设置为你的 Codeforces 用户名:
CF_HANDLE=your_codeforces_handle
2.3 运行 GitHub Actions
- 打开 GitHub 仓库的 Actions 页面。
- 在右侧点击 "Run Workflow" 按钮,手动触发工作流以生成统计卡片。
2.4 获取生成的卡片
生成的 SVG 卡片将保存在 output/ 目录中。你可以查看这些卡片,并将其嵌入到你的 GitHub 个人资料 README 文件中。
2.5 嵌入卡片到 README
在你的 GitHub 个人资料 README 文件中,添加以下代码以嵌入生成的卡片:
[](https://raw.githubusercontent.com/your-github-username/cf-stats/main/output/light_card.svg)
[](https://raw.githubusercontent.com/your-github-username/cf-stats/main/output/max_rating.svg)
[](https://raw.githubusercontent.com/your-github-username/cf-stats/main/output/rating.svg)
3. 应用案例和最佳实践
3.1 展示个人技能
通过在 GitHub 个人资料中展示 Codeforces 的统计数据,可以直观地展示个人的编程能力和解决问题的技能。这对于求职或参与开源项目时非常有用。
3.2 自动化更新
CF-STATS 利用 GitHub Actions 自动更新统计数据,无需手动操作。这确保了个人资料中的统计数据始终是最新的。
3.3 自定义卡片
用户可以根据自己的需求自定义生成的 SVG 卡片,例如更改颜色、添加更多统计信息等。
4. 典型生态项目
4.1 Codeforces Enhancer
Codeforces Enhancer 是一个 Chrome 扩展,可以增强 Codeforces 的用户体验,例如添加多重评分图表、彩色化排行榜等。
4.2 Competitive Companion
Competitive Companion 是一个浏览器扩展,可以解析竞争性编程问题,并将它们发送到各种工具,如 CP Editor 和 CPH。
4.3 Codeforces++
Codeforces++ 是一个 Chrome 扩展包,提供了多种增强功能,如预测评分变化、显示近似增量等。
通过结合这些生态项目,用户可以进一步提升在 Codeforces 上的编程体验和效率。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00