Mbed TLS 3.6.3 版本发布:TLS 安全增强与关键修复
Mbed TLS 是一个开源的 SSL/TLS 加密库,专为嵌入式系统和物联网设备设计,提供了完整的 SSL/TLS 协议实现以及各种加密算法。作为 ARM 公司维护的项目,Mbed TLS 以其轻量级、模块化和高度可配置的特性,成为嵌入式安全通信的重要选择。
本次发布的 Mbed TLS 3.6.3 版本属于长期支持(LTS)分支,将持续获得安全更新和错误修复直至2027年3月。该版本主要解决了TLS握手过程中的几个关键安全问题,并引入了一些新功能和改进。
安全增强
3.6.3版本修复了两个重要的安全问题:
-
TLS客户端主机名验证问题:当TLS客户端未调用
mbedtls_ssl_set_hostname()函数时,服务器证书验证过程可能存在潜在风险,攻击者可能借此冒充服务器。新版本默认情况下会阻止此类握手,返回MBEDTLS_ERR_SSL_CERTIFICATE_VERIFICATION_WITHOUT_HOSTNAME错误。开发者可以通过设置MBEDTLS_SSL_CLI_ALLOW_WEAK_CERTIFICATE_VERIFICATION_WITHOUT_HOSTNAME编译选项恢复旧行为,但不建议这样做。 -
TLS 1.2握手完成消息计算问题:当内存分配失败或加密硬件出现故障时,Finished消息可能被错误计算,这会破坏TLS握手的安全性保证。该问题已得到修复。
此外,版本还增加了临时堆缓冲区的清零操作,包括PSA密钥派生过程中的ECC密钥对生成,进一步提升了安全性。
新功能与改进
-
静态密钥槽支持:新增
MBEDTLS_PSA_STATIC_KEY_SLOTS配置选项,允许使用静态存储而非动态分配来管理密钥槽,这对于禁用malloc的环境非常有用。相关缓冲区大小可通过MBEDTLS_PSA_STATIC_KEY_SLOT_BUFFER_SIZE配置。 -
MD模块扩展:现在MD模块可以在
MBEDTLS_PSA_CRYPTO_CLIENT && !MBEDTLS_PSA_CRYPTO_C配置下执行PSA分发,尽管这种配置并非官方支持。这需要链接支持相应PSA_WANT_ALG_xxx的PSA加密提供程序库。 -
性能优化:改进了PSA ECC密钥生成的性能,不再计算立即丢弃的公钥。
重要错误修复
-
TLS握手消息重组:修复了TLS(包括1.2和1.3)中分片握手消息的重组支持问题,该问题导致与某些服务器(特别是TLS 1.3)的握手失败。需要注意,分片的ClientHello仅在启用TLS 1.3支持时才被支持。
-
编译修复:解决了MS-DOS DJGPP平台上的编译问题,以及GCC类编译器在通用x86_64目标上构建AES时的内联汇编约束问题。
-
网络接口修复:在
mbedtls_net_bind和mbedtls_net_connect中使用mbedtls_net_close替代close,防止可能的文件描述符双重关闭问题。 -
调试输出修复:修正了
MBEDTLS_PRINTF_SIZET的定义,解决了Visual Studio 2013或MinGW构建版本中启用SSL调试时可能发生的运行时崩溃。
升级建议
所有使用Mbed TLS的用户都应考虑升级到此版本,特别是那些依赖TLS协议进行安全通信的应用。长期支持分支的特性使得3.6.x系列成为生产环境的稳定选择。升级时应注意新版本中关于主机名验证的默认行为变化,确保应用代码相应调整。
对于嵌入式开发者而言,新加入的静态密钥槽支持为资源受限环境提供了更好的选择,而TLS握手消息重组修复则提升了与各种服务器的兼容性。安全修复更是应该尽快应用到生产环境中,以防止潜在的风险。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00