Mbed TLS 3.6.3 版本发布:TLS 安全增强与关键修复
Mbed TLS 是一个开源的 SSL/TLS 加密库,专为嵌入式系统和物联网设备设计,提供了完整的 SSL/TLS 协议实现以及各种加密算法。作为 ARM 公司维护的项目,Mbed TLS 以其轻量级、模块化和高度可配置的特性,成为嵌入式安全通信的重要选择。
本次发布的 Mbed TLS 3.6.3 版本属于长期支持(LTS)分支,将持续获得安全更新和错误修复直至2027年3月。该版本主要解决了TLS握手过程中的几个关键安全问题,并引入了一些新功能和改进。
安全增强
3.6.3版本修复了两个重要的安全问题:
-
TLS客户端主机名验证问题:当TLS客户端未调用
mbedtls_ssl_set_hostname()函数时,服务器证书验证过程可能存在潜在风险,攻击者可能借此冒充服务器。新版本默认情况下会阻止此类握手,返回MBEDTLS_ERR_SSL_CERTIFICATE_VERIFICATION_WITHOUT_HOSTNAME错误。开发者可以通过设置MBEDTLS_SSL_CLI_ALLOW_WEAK_CERTIFICATE_VERIFICATION_WITHOUT_HOSTNAME编译选项恢复旧行为,但不建议这样做。 -
TLS 1.2握手完成消息计算问题:当内存分配失败或加密硬件出现故障时,Finished消息可能被错误计算,这会破坏TLS握手的安全性保证。该问题已得到修复。
此外,版本还增加了临时堆缓冲区的清零操作,包括PSA密钥派生过程中的ECC密钥对生成,进一步提升了安全性。
新功能与改进
-
静态密钥槽支持:新增
MBEDTLS_PSA_STATIC_KEY_SLOTS配置选项,允许使用静态存储而非动态分配来管理密钥槽,这对于禁用malloc的环境非常有用。相关缓冲区大小可通过MBEDTLS_PSA_STATIC_KEY_SLOT_BUFFER_SIZE配置。 -
MD模块扩展:现在MD模块可以在
MBEDTLS_PSA_CRYPTO_CLIENT && !MBEDTLS_PSA_CRYPTO_C配置下执行PSA分发,尽管这种配置并非官方支持。这需要链接支持相应PSA_WANT_ALG_xxx的PSA加密提供程序库。 -
性能优化:改进了PSA ECC密钥生成的性能,不再计算立即丢弃的公钥。
重要错误修复
-
TLS握手消息重组:修复了TLS(包括1.2和1.3)中分片握手消息的重组支持问题,该问题导致与某些服务器(特别是TLS 1.3)的握手失败。需要注意,分片的ClientHello仅在启用TLS 1.3支持时才被支持。
-
编译修复:解决了MS-DOS DJGPP平台上的编译问题,以及GCC类编译器在通用x86_64目标上构建AES时的内联汇编约束问题。
-
网络接口修复:在
mbedtls_net_bind和mbedtls_net_connect中使用mbedtls_net_close替代close,防止可能的文件描述符双重关闭问题。 -
调试输出修复:修正了
MBEDTLS_PRINTF_SIZET的定义,解决了Visual Studio 2013或MinGW构建版本中启用SSL调试时可能发生的运行时崩溃。
升级建议
所有使用Mbed TLS的用户都应考虑升级到此版本,特别是那些依赖TLS协议进行安全通信的应用。长期支持分支的特性使得3.6.x系列成为生产环境的稳定选择。升级时应注意新版本中关于主机名验证的默认行为变化,确保应用代码相应调整。
对于嵌入式开发者而言,新加入的静态密钥槽支持为资源受限环境提供了更好的选择,而TLS握手消息重组修复则提升了与各种服务器的兼容性。安全修复更是应该尽快应用到生产环境中,以防止潜在的风险。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00