TruLens v1.5.0:基于OpenTelemetry的AI代理可观测性框架
2025-06-18 15:49:54作者:鲍丁臣Ursa
TruLens是一个专注于AI代理和RAG系统评估与追踪的开源框架。在AI应用日益智能化的今天,如何有效追踪和评估这些动态、分布式的智能系统成为了开发者面临的新挑战。最新发布的TruLens v1.5.0版本通过集成OpenTelemetry(OTel)标准,为AI代理世界带来了强大的可观测性能力。
智能代理追踪的挑战
传统的软件系统追踪方法已经无法满足现代AI代理的需求,主要面临以下挑战:
- 语言无关性:代理可能使用Python、Go、Java等多种语言开发
- 分布式特性:多代理系统往往跨越多个机器或进程
- 动态执行:代理的决策流程是动态生成的,无法预先完全定义
- 工具复用:同一工具可能在单个执行过程中被多次调用
- 现有生态集成:需要与现有的OpenTelemetry监控栈兼容
OpenTelemetry集成带来的优势
TruLens v1.5.0通过深度集成OpenTelemetry标准,提供了以下关键能力:
- 跨语言追踪:支持Python、Go等多种语言开发的代理系统
- 分布式追踪:能够追踪跨进程、跨机器的代理交互
- 语义约定:为AI代理世界定义了标准的语义约定(Semantic Conventions)
- 现有生态兼容:可以与现有的OpenTelemetry监控工具无缝集成
核心功能解析
语义约定标准化
TruLens为AI代理定义了标准的语义约定,确保不同框架实现的代理都能以统一的方式被追踪和评估。例如:
@instrument(
span_type=SpanAttributes.SpanType.RETRIEVAL,
attributes={
SpanAttributes.RETRIEVAL.QUERY_TEXT: "query",
SpanAttributes.RETRIEVAL.RETRIEVED_CONTEXTS: "return",
}
)
def retrieve(self, query: str) -> list:
results = vector_store.query(query_texts=query, n_results=4)
return [doc for sublist in results["documents"] for doc in sublist]
复杂执行流处理
针对代理可能多次调用同一工具的情况,TruLens引入了"span groups"概念:
@instrument(attributes={SpanAttributes.SPAN_GROUPS: "idx"})
def clean_up_question(question: str, idx: str) -> str:
...
评估指标计算
TruLens支持基于追踪数据的评估指标计算,如RAG三要素评估:
f_context_relevance = (
Feedback(provider.context_relevance_with_cot_reasons, name="Context Relevance")
.on_input()
.on_context(collect_list=True)
.aggregate(np.mean)
)
实践指南
基础配置
- 安装TruLens:
pip install trulens-core==1.5.0
- 启用OpenTelemetry:
os.environ["TRULENS_OTEL_TRACING"] = "1"
应用集成示例
from trulens.core.otel.instrument import instrument
@instrument(
attributes={
SpanAttributes.RECORD_ROOT.INPUT: "query",
SpanAttributes.RECORD_ROOT.OUTPUT: "return",
}
)
def query(self, query: str) -> str:
context_str = self.retrieve(query=query)
completion = self.generate_completion(query=query, context_str=context_str)
return completion
可视化分析
启动仪表板查看执行追踪:
from trulens.dashboard import run_dashboard
run_dashboard(session)
技术演进方向
TruLens v1.5.0的技术演进主要体现在:
- 标准化:通过OpenTelemetry实现追踪标准化
- 可扩展性:支持多种语言和框架的代理系统
- 评估深度:提供从基础指标到复杂评估的全套工具
- 生产就绪:支持从开发到生产的全生命周期管理
总结
TruLens v1.5.0通过OpenTelemetry集成,为AI代理系统提供了标准化的可观测性解决方案。它不仅解决了代理系统特有的追踪挑战,还通过语义约定确保了不同实现之间的互操作性。对于正在构建或使用AI代理的开发者来说,TruLens提供了一个强大的工具来理解、评估和优化代理行为。
随着AI代理技术的快速发展,TruLens的这套基于标准的可观测性框架,将成为构建可靠、可解释AI系统的重要基础设施。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218