TensorCircuit 使用教程
2024-09-18 17:11:12作者:曹令琨Iris
1. 项目介绍
TensorCircuit 是一个基于张量网络的开源量子电路模拟器,专为速度、灵活性和代码效率而设计。它支持自动微分、即时编译、硬件加速和向量化并行处理,适用于 Noisy Intermediate-Scale Quantum (NISQ) 时代的量子算法设计、模拟和分析。TensorCircuit 完全用 Python 编写,并构建在行业标准的机器学习框架之上,如 Jax、TensorFlow 和 PyTorch。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 环境。然后,使用 pip 安装 TensorCircuit:
pip install tensorcircuit
如果你希望使用 TensorFlow 作为后端,可以安装带有 TensorFlow 支持的版本:
pip install tensorcircuit[tensorflow]
快速示例
以下是一个简单的量子电路示例,展示了如何使用 TensorCircuit 创建一个量子电路并计算期望值。
import tensorcircuit as tc
# 创建一个包含2个量子比特的电路
c = tc.Circuit(2)
# 在第一个量子比特上应用Hadamard门
c.H(0)
# 在第一个量子比特和第二个量子比特之间应用CNOT门
c.CNOT(0, 1)
# 计算电路的波函数
print(c.wavefunction())
# 计算Z基上的期望值
print(c.expectation_ps(z=[0, 1]))
3. 应用案例和最佳实践
应用案例1:量子近似优化算法(QAOA)
QAOA 是一种用于解决组合优化问题的量子算法。以下是一个简单的 QAOA 示例:
import tensorcircuit as tc
# 定义QAOA的参数
p = 2 # QAOA的层数
gamma = [0.1, 0.2]
beta = [0.3, 0.4]
# 创建电路
c = tc.Circuit(2)
# 应用QAOA层
for i in range(p):
c.rx(0, theta=2 * beta[i])
c.rx(1, theta=2 * beta[i])
c.cnot(0, 1)
c.rz(1, theta=2 * gamma[i])
c.cnot(0, 1)
# 计算期望值
expectation = c.expectation_ps(z=[0, 1])
print(expectation)
应用案例2:变分量子本征求解器(VQE)
VQE 是一种用于寻找分子基态能量的量子算法。以下是一个简单的 VQE 示例:
import tensorcircuit as tc
# 定义VQE的参数
theta = 0.5
# 创建电路
c = tc.Circuit(2)
# 应用VQE层
c.rx(0, theta=theta)
c.rx(1, theta=theta)
# 计算期望值
expectation = c.expectation_ps(z=[0, 1])
print(expectation)
4. 典型生态项目
TenCirChem
TenCirChem 是一个基于 TensorCircuit 的高效量子计算软件包,专门用于分子性质的计算。它优化了化学应用,提供了丰富的功能和高效的性能。
QML4HEP
QML4HEP 是一个用于高能物理(HEP)的量子机器学习项目,利用 TensorCircuit 进行量子模拟和机器学习任务。
Quantum Federated Learning
量子联邦学习项目利用 TensorCircuit 进行分布式量子机器学习任务,展示了在非独立同分布(Non-IID)数据下的量子联邦学习方法。
通过这些生态项目,TensorCircuit 展示了其在不同领域的广泛应用和强大功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
311
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
242
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
149
175
暂无简介
Dart
604
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
227
81
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
363
2.99 K
React Native鸿蒙化仓库
JavaScript
236
310