Spark Operator 监控指标缺失问题分析与解决方案
问题背景
在使用Spark Operator进行Spark应用管理时,开发者发现无法从/metrics端点获取预期的监控指标。根据官方文档描述,应该能够看到一系列以spark_application_开头的指标,但在实际环境中这些指标并未出现。
问题现象
开发者部署了Spark Operator 2.0.2版本,启用了监控功能(--enable-metrics=true),并配置了监控端口8080。虽然Operator能够正常启动并显示"Starting metrics server"的日志信息,但在访问/metrics端点时,只能看到controller_runtime_active_workers等基础指标,而缺少关键的Spark应用相关指标。
根本原因分析
经过深入调查和验证,发现以下几个关键点:
-
指标命名变更:最新版本的Spark Operator已经将指标前缀从文档中描述的spark_app_变更为spark_application_,这是导致开发者无法找到预期指标的一个重要原因。
-
指标生成条件:Spark Operator的监控指标并非在启动后立即生成,而是需要至少有一个Spark应用被成功提交后才会开始记录相关指标。没有Spark应用运行时,这些指标自然不会出现在/metrics端点中。
-
指标持久性问题:当Operator Pod重启后,之前记录的指标数据会丢失,需要重新提交Spark应用才能重新生成这些指标。
解决方案
要正确获取Spark Operator的监控指标,需要遵循以下步骤:
-
部署Spark Operator:确保在部署时启用了监控功能,典型配置如下:
--enable-metrics=true --metrics-bind-address=:8080 --metrics-endpoint=/metrics
-
提交测试应用:部署一个简单的Spark应用(如Spark Pi示例),这是触发指标生成的关键步骤。示例应用提交后,Operator会开始记录应用提交数、运行时间、延迟等指标。
-
验证指标:访问/metrics端点,现在应该能看到以下类别的指标:
- spark_application_count:Spark应用总数
- spark_application_running_count:当前运行的Spark应用数
- spark_application_start_latency_seconds:应用启动延迟
- spark_application_success_count:成功完成的应用数
- spark_application_success_execution_time_seconds:成功应用执行时间
最佳实践建议
-
监控系统集成:建议将Spark Operator的监控指标接入Prometheus等监控系统,实现长期存储和可视化。
-
应用生命周期管理:在测试环境中保持至少一个简单的Spark应用运行,确保监控指标持续可用。
-
版本兼容性检查:升级Spark Operator版本时,注意检查指标名称和格式是否发生变化,相应调整监控系统的配置。
-
指标持久化方案:对于需要长期保留的监控数据,考虑使用外部存储或实现自定义的指标导出机制。
通过以上分析和解决方案,开发者可以正确获取和利用Spark Operator提供的监控指标,更好地掌握Spark应用在Kubernetes环境中的运行状况。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









