Spark Operator 监控指标缺失问题分析与解决方案
问题背景
在使用Spark Operator进行Spark应用管理时,开发者发现无法从/metrics端点获取预期的监控指标。根据官方文档描述,应该能够看到一系列以spark_application_开头的指标,但在实际环境中这些指标并未出现。
问题现象
开发者部署了Spark Operator 2.0.2版本,启用了监控功能(--enable-metrics=true),并配置了监控端口8080。虽然Operator能够正常启动并显示"Starting metrics server"的日志信息,但在访问/metrics端点时,只能看到controller_runtime_active_workers等基础指标,而缺少关键的Spark应用相关指标。
根本原因分析
经过深入调查和验证,发现以下几个关键点:
-
指标命名变更:最新版本的Spark Operator已经将指标前缀从文档中描述的spark_app_变更为spark_application_,这是导致开发者无法找到预期指标的一个重要原因。
-
指标生成条件:Spark Operator的监控指标并非在启动后立即生成,而是需要至少有一个Spark应用被成功提交后才会开始记录相关指标。没有Spark应用运行时,这些指标自然不会出现在/metrics端点中。
-
指标持久性问题:当Operator Pod重启后,之前记录的指标数据会丢失,需要重新提交Spark应用才能重新生成这些指标。
解决方案
要正确获取Spark Operator的监控指标,需要遵循以下步骤:
-
部署Spark Operator:确保在部署时启用了监控功能,典型配置如下:
--enable-metrics=true --metrics-bind-address=:8080 --metrics-endpoint=/metrics -
提交测试应用:部署一个简单的Spark应用(如Spark Pi示例),这是触发指标生成的关键步骤。示例应用提交后,Operator会开始记录应用提交数、运行时间、延迟等指标。
-
验证指标:访问/metrics端点,现在应该能看到以下类别的指标:
- spark_application_count:Spark应用总数
- spark_application_running_count:当前运行的Spark应用数
- spark_application_start_latency_seconds:应用启动延迟
- spark_application_success_count:成功完成的应用数
- spark_application_success_execution_time_seconds:成功应用执行时间
最佳实践建议
-
监控系统集成:建议将Spark Operator的监控指标接入Prometheus等监控系统,实现长期存储和可视化。
-
应用生命周期管理:在测试环境中保持至少一个简单的Spark应用运行,确保监控指标持续可用。
-
版本兼容性检查:升级Spark Operator版本时,注意检查指标名称和格式是否发生变化,相应调整监控系统的配置。
-
指标持久化方案:对于需要长期保留的监控数据,考虑使用外部存储或实现自定义的指标导出机制。
通过以上分析和解决方案,开发者可以正确获取和利用Spark Operator提供的监控指标,更好地掌握Spark应用在Kubernetes环境中的运行状况。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00