Spring for GraphQL 使用教程
1. 项目介绍
Spring for GraphQL 是 Spring 项目的一部分,专注于为 GraphQL 提供全面的支持。它结合了 Spring 框架的强大功能和 GraphQL 的灵活性,使得开发者能够轻松地在 Spring 应用中集成 GraphQL。Spring for GraphQL 提供了从服务器端到客户端的全套解决方案,包括数据获取、模式定义、上下文传播、异常处理等功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Java 8 或更高版本
- Maven 或 Gradle
- Spring Boot 2.5 或更高版本
2.2 创建项目
首先,使用 Spring Initializr 创建一个新的 Spring Boot 项目,并添加 Spring for GraphQL 依赖。
curl https://start.spring.io/starter.zip -d dependencies=web,graphql -d bootVersion=2.5.4 -d baseDir=spring-graphql-demo -o spring-graphql-demo.zip
unzip spring-graphql-demo.zip
cd spring-graphql-demo
2.3 配置 GraphQL
在 src/main/resources 目录下创建一个 schema.graphqls 文件,定义你的 GraphQL 模式。
type Query {
hello: String
}
2.4 实现 DataFetcher
创建一个 HelloController 类,实现 DataFetcher。
import org.springframework.graphql.data.method.annotation.QueryMapping;
import org.springframework.stereotype.Controller;
@Controller
public class HelloController {
@QueryMapping
public String hello() {
return "Hello, GraphQL!";
}
}
2.5 启动应用
运行 Spring Boot 应用。
./mvnw spring-boot:run
2.6 测试 GraphQL
打开浏览器,访问 http://localhost:8080/graphiql,输入以下查询:
{
hello
}
你应该会看到返回的结果:
{
"data": {
"hello": "Hello, GraphQL!"
}
}
3. 应用案例和最佳实践
3.1 数据整合
Spring for GraphQL 支持与多种数据源的整合,包括关系型数据库、NoSQL 数据库、REST API 等。通过 DataFetcher 和 DataLoader,可以轻松实现数据的批量加载和缓存。
3.2 上下文传播
在复杂的应用中,上下文传播是一个重要的功能。Spring for GraphQL 支持从服务器传输层透明地传播上下文,包括 ThreadLocal 和 Reactor Context。
3.3 异常处理
Spring for GraphQL 提供了灵活的异常处理机制,可以通过自定义 ExceptionResolver 来处理特定的异常,并返回友好的错误信息。
4. 典型生态项目
4.1 Spring Boot
Spring Boot 是 Spring for GraphQL 的基础框架,提供了自动配置和快速启动的能力。
4.2 GraphQL Java
GraphQL Java 是 GraphQL 的 Java 实现,Spring for GraphQL 基于此库构建,提供了更高层次的抽象和集成。
4.3 Spring Data
Spring Data 提供了与多种数据源的集成,包括 JPA、MongoDB、Cassandra 等。Spring for GraphQL 可以与 Spring Data 无缝集成,简化数据访问层的开发。
4.4 Spring Security
Spring Security 提供了强大的安全功能,Spring for GraphQL 支持与 Spring Security 的集成,确保 GraphQL API 的安全性。
通过以上步骤,你可以快速上手 Spring for GraphQL,并将其应用于实际项目中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00