Hoarder项目中使用OLLAMA替代OpenAI的Docker Compose配置指南
2025-05-14 20:43:34作者:邵娇湘
在自托管内容管理工具Hoarder中,用户经常需要为内容添加智能标签。虽然官方默认使用OpenAI的API进行内容分析,但许多用户出于隐私或成本考虑,更倾向于使用本地运行的OLLAMA大语言模型。本文将详细介绍如何通过Docker Compose配置Hoarder项目,使其完美兼容OLLAMA本地推理服务。
核心配置原理
Hoarder通过环境变量控制其AI推理行为。要切换到OLLAMA,需要配置以下几个关键环境变量:
- OLLAMA_BASE_URL:指向OLLAMA服务的地址
- INFERENCE_TEXT_MODEL:指定文本分析使用的模型
- INFERENCE_IMAGE_MODEL:指定图像分析使用的模型
- INFERENCE_CONTEXT_LENGTH:调整上下文长度以获得更好的标签质量
完整Docker Compose示例
以下是一个经过验证的完整配置方案,特别解决了容器间网络通信和GPU加速问题:
version: '3.8'
services:
web:
image: ghcr.io/hoarder-app/hoarder:release
container_name: hoarder-web
restart: unless-stopped
ports:
- "3000:3000"
volumes:
- ./data:/data
environment:
MEILI_ADDR: http://meilisearch:7700
BROWSER_WEB_URL: http://chrome:9222
OLLAMA_BASE_URL: http://ollama:11434
INFERENCE_TEXT_MODEL: phi3:3.8b
INFERENCE_IMAGE_MODEL: llava:7b
INFERENCE_CONTEXT_LENGTH: 2048
INFERENCE_LANG: english
INFERENCE_JOB_TIMEOUT_SEC: 60
DATA_DIR: /data
networks:
- hoarder-net
chrome:
image: alpine-chrome:latest
restart: unless-stopped
command:
- --no-sandbox
- --disable-gpu
- --disable-dev-shm-usage
- --remote-debugging-address=0.0.0.0
- --remote-debugging-port=9222
- --hide-scrollbars
networks:
- hoarder-net
meilisearch:
image: getmeili/meilisearch:v1.11.1
restart: unless-stopped
environment:
MEILI_NO_ANALYTICS: "true"
volumes:
- ./meilisearch:/meili_data
networks:
- hoarder-net
ollama:
container_name: ollama-service
image: ollama/ollama:latest
restart: unless-stopped
volumes:
- ./ollama:/root/.ollama
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
networks:
- hoarder-net
networks:
hoarder-net:
driver: bridge
关键配置解析
-
网络配置:创建专用网络
hoarder-net确保各服务间可靠通信,避免了直接使用localhost带来的连接问题。 -
OLLAMA服务:
- 使用官方OLLAMA镜像
- 挂载volume持久化模型数据
- 配置NVIDIA GPU支持(需宿主机已安装nvidia-container-toolkit)
-
模型预加载:虽然可以在compose中尝试通过entrypoint预加载模型,但更可靠的方式是:
docker exec -it ollama-service ollama pull phi3:3.8b docker exec -it ollama-service ollama pull llava:7b
常见问题解决方案
-
GPU加速问题:
- 确保宿主机已安装NVIDIA驱动
- 安装nvidia-container-toolkit
- 在docker配置中启用GPU支持
-
模型加载失败:
- 检查OLLAMA日志确认模型下载是否完成
- 验证模型名称拼写是否正确
- 确保分配的磁盘空间足够
-
跨平台适配:
- Linux:推荐使用上述容器化方案
- Windows/Mac:可将OLLAMA_BASE_URL改为
http://host.docker.internal:11434访问宿主机服务
性能优化建议
- 根据硬件配置调整
INFERENCE_CONTEXT_LENGTH,值越大标签质量越好,但消耗资源更多 - 对于文本分析,推荐使用较小的高效模型如
phi3:3.8b - 图像分析可使用
llava系列模型 - 设置合理的
INFERENCE_JOB_TIMEOUT_SEC防止长时间挂起
通过以上配置,用户可以在完全离线的环境中运行Hoarder,享受AI带来的智能标签功能,同时确保所有数据处理都在本地完成,满足最高级别的隐私保护需求。这种方案特别适合对数据敏感性要求高的企业环境或个人用户。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134