Marigold 深度学习项目指南
2024-09-22 12:00:31作者:袁立春Spencer
本指南旨在帮助您快速理解并上手 Marigold,一个用于单目深度估计的创新模型,基于扩散式图像生成器改造。以下内容将涵盖其基本架构、关键文件以及如何配置和启动项目。
1. 目录结构及介绍
Marigold 的项目目录结构精心设计,便于理解和扩展,主要结构如下:
Marigold/
├── contrib # 可能包含额外的贡献代码或库
├── data_split # 数据集分割相关文件或脚本
├── doc # 文档资料,包括技术说明等
├── marigold # 核心模型代码
├── script # 辅助脚本,如数据处理、实验设置等
├── src # 主要源代码,含模型实现
├── .gitignore # Git忽略文件配置
├── CONTRIBUTING.md # 贡献者指导文档
├── LICENSE.txt # 许可证文件,使用Apache-2.0许可证
├── README.md # 项目介绍和快速入门文档
├── environment.yaml # 环境配置文件,用于创建项目所需环境
├── eval.py # 评估脚本
├── infer.py # 推理脚本
├── requirements++.txt # 高级依赖列表
├── requirements+.txt # 补充依赖列表
├── requirements.txt # 基础依赖列表
├── run.py # 运行脚本,可能用于训练或测试
└── train.py # 训练脚本
核心文件简介:
infer.py和run.py: 推理和运行脚本,提供了模型应用的关键入口。train.py: 训练新模型的主要脚本。environment.yaml: 创建一致开发环境的Conda环境配置。src: 包含模型定义与核心算法实现。README.md: 关键信息汇总,包括安装、使用和项目亮点。
2. 项目的启动文件介绍
推理与运行
run.py: 提供了对已有模型进行推断的基础命令行接口。通过指定不同的参数,可以调整输入目录、输出目录、模型版本(如DDIM或LCM)以及其他配置,来适应不同场景的深度预测需求。infer.py: 专注于快速推断过程,特别适用于快速查看结果或进行局部测试。
训练流程
train.py: 用于训练模型,需要数据集准备和适当的配置。详细的训练指令在项目文档中会有进一步说明。
3. 项目的配置文件介绍
environment.yaml: 环境配置文件,描述了运行项目所需的Python环境,包括所有必要的包及其版本。- 运行时配置:虽然项目中没有明确指出一个单独的“配置文件”,但参数通常通过脚本中的命令行参数或内部变量进行设置。例如,在推理和训练过程中,可以通过命令行参数指定如模型路径、数据目录、是否使用半精度运算等关键配置项。
为了具体配置你的实验或开发环境,遵循CONTRIBUTING.md文件中的指示,并确保已正确设置environment.yaml以构建正确的Python环境。启动项目之前,请确保仔细阅读README.md,了解最新的指令和最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143