ToonShading开源项目教程
2025-04-27 23:47:35作者:裴锟轩Denise
1. 项目介绍
ToonShading 是一个开源项目,它专注于为游戏和应用提供卡通风格的着色效果。这种着色技术常用于创建具有独特视觉风格的三维渲染,给用户带来一种平面卡通的感觉,同时保留三维空间的深度感。项目基于Unity引擎,通过自定义Shader实现,适用于那些希望为作品添加独特美术风格的游戏开发者。
2. 项目快速启动
要快速启动并使用ToonShading,请按照以下步骤操作:
首先,确保你已经安装了Unity编辑器。然后,你可以通过以下代码将项目克隆到本地:
git clone https://github.com/Broxxar/ToonShading.git
进入项目文件夹后,打开Unity编辑器,选择“Open Project”并导航到项目文件夹。在Unity编辑器中,你可以找到相关的Shader文件和材质设置。
以下是一个基础的Shader代码示例,用于创建简单的卡通阴影效果:
Shader "Custom/ToonShader"
{
Properties
{
_Color ("Base Color", Color) = (1,1,1,1)
_Shininess ("Shininess", Range(0, 1)) = 0.5
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORD0;
};
struct v2f
{
float2 uv : TEXCOORD0;
float3 worldNormal : NORMAL;
float4 vertex : SV_POSITION;
};
fixed4 _Color;
float _Shininess;
v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.worldNormal = normalize(UnityObjectToWorldNormal(v.normal));
o.uv = v.uv;
return o;
}
fixed4 frag (v2f i) : SV_Target
{
// 计算漫反射
fixed3 lightDir = normalize(UnityWorldSpaceLightDir());
fixed3 normalDir = normalize(i.worldNormal);
fixed diff = dot(normalDir, lightDir);
// 应用卡通着色
fixed4 col = _Color;
col.rgb = lerp(col.rgb, 0.0, step(0.5, diff));
col.rgb = lerp(col.rgb, 1.0, step(0.8, diff));
return col;
}
ENDCG
}
}
FallBack "Diffuse"
}
将上述Shader代码复制到Unity编辑器的Shader文件中,并将其应用到你想要着色的物体上。
3. 应用案例和最佳实践
使用ToonShading时,以下是一些最佳实践:
- 在创建材料时,使用明亮的颜色,以便在应用着色器后获得清晰的卡通效果。
- 避免使用过多的细节,因为卡通着色通常会平滑处理光照细节。
- 适当调整Shader中的参数,比如
_Shininess
,以获得更好的视觉效果。 - 在场景中添加适当的灯光,以增强着色效果。
4. 典型生态项目
ToonShading项目的生态中,你可能还会遇到以下相关项目:
- Unity卡通渲染教程:提供了一系列教程,教授如何使用Unity和ToonShading创建卡通风格的游戏。
- ToonShader库:一个包含多种卡通渲染Shader的库,可应用于不同的场景和物体。
通过结合这些生态项目,你可以更好地利用ToonShading项目,为你的作品增添独特的艺术风格。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44