Jackett项目中的NewHeaven索引器开发与优化
背景介绍
在Jackett这个开源的Torrent索引器聚合项目中,开发者们正在为NewHeaven这个德国私有Tracker添加支持。NewHeaven是一个专注于德语资源的私有Tracker,内容涵盖电影、音频、电视节目和通用资源。该项目需要将原有的C#实现转换为更现代的YAML格式,并解决一系列技术挑战。
技术挑战与解决方案
1. 搜索时间参数处理
原实现中使用了不直观的数值编码来表示时间范围(0表示任意时间,1表示1天,2表示1周等)。经过优化后,改为直接使用"自上传以来的天数"这一更直观的参数,0表示所有时间范围。这种改进使API接口更加清晰易懂。
2. 元素选择器优化
在HTML解析过程中,发现原有的选择器不够精确。通过使用双重属性选择器,能够更准确地定位到标题和详情链接:
a[href^="index.php?strWebValue=torrent&strWebAction=details&id="][href$="&view=1"]
这种精确的选择器避免了潜在的匹配错误,提高了数据提取的可靠性。
3. 下载URL构建机制
由于HTML表格中不直接包含下载URL,开发团队实现了一个巧妙的解决方案:
- 首先从详情链接中提取Torrent ID
- 然后使用模板构建完整的下载URL:"index.php?strWebValue=torrent&strWebAction=download&id={{ .Result.id }}"
这种方法展示了如何在不直接获取数据的情况下,通过已有信息构建所需URL。
4. 体积因子处理
NewHeaven使用图片和文本来表示不同的下载/上传体积因子。开发团队实现了灵活的条件匹配机制:
- 下载体积因子:匹配"50% DL"、"25% DL"文本或特定图片
- 上传体积因子:匹配"200% UP"文本或特定图片
这种处理方式能够适应Tracker使用的多种表示方法。
5. 日期解析问题
在日期解析过程中,最初遇到了格式问题。错误信息显示:
Error while parsing DateTime "08.08.2024 20:01+01:00"
问题在于时间字符串中缺少必要的空格。通过调整日期解析布局,最终解决了这个问题。
验证过程中的挑战
在Prowlarr中进行验证时,发现"onlyup"筛选功能存在问题。这是因为网站本身不支持直接搜索"onlyup"类型的资源,导致客户端需要先获取结果再进行过滤。这种情况在私有Tracker集成中较为常见,通常需要客户端做额外处理。
技术实现细节
在元素选择方面,虽然HTML中可能存在多个匹配项,但系统总是选择第一个匹配结果。经过验证,第一个匹配项始终是标题中的链接,这保证了数据的一致性。这是Jackett项目中处理类似情况的常用方法。
总结
NewHeaven索引器的开发过程展示了在集成私有Tracker时可能遇到的各种技术挑战,以及Jackett项目团队如何系统地解决这些问题。从参数设计、HTML解析到特殊功能的实现,每一步都需要仔细考虑Tracker的特有行为和数据结构。这些经验对于开发类似功能的集成具有重要参考价值。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00