渲染深度隐式Signed Distance函数:DIST渲染器指南
项目介绍
DIST渲染器是基于CVPR 2020论文《DIST: 不同可微球面追踪下的深层隐式Signed Distance函数渲染》实现的一个开源项目。此项目提出了一种不同的可微球面追踪算法,旨在连接逆图形方法与最近提出的基于深度学习的隐式签名距离函数(SDF)。该算法优化了渲染层的前后向传递,使其能够在标准显卡上高效运行,且内存消耗可控。通过这种完全可微的渲染方法,可以直接在渲染出的2D图像上计算损失,并将梯度反向传播以优化3D几何形状,适用于从稀疏深度数据或多视图图像重建精确的3D模型。
项目快速启动
首先,确保你的系统已安装Anaconda3。若未安装,可通过以下命令下载并安装:
wget https://repo.anaconda.com/archive/Anaconda3-2019.07-Linux-x86_64.sh
sh Anaconda3-2019.07-Linux-x86_64.sh
创建并激活一个虚拟环境来管理依赖:
conda create -n sdfrenderer python=3.7 -y
conda activate sdfrenderer
接下来,安装PyTorch及相关库:
conda install pytorch=1.1.0 torchvision cudatoolkit=9.0 -c pytorch
克隆DIST渲染器的GitHub仓库:
git clone https://github.com/B1ueber2y/DIST-Renderer.git
cd DIST-Renderer
随后,参照项目的README.md文件中的具体指示进行配置和编译步骤,开始你的DIST渲染之旅。
应用案例和最佳实践
DIST适用于多种场景,如从单视图或多视图图像中重构3D形状,以及纹理渲染于深层隐式SDF之上。开发者可以通过修改示例脚本,体验如何利用DIST从不同类型的输入数据(如深度图、多视角图片)中生成或优化3D模型。最佳实践包括开始于简单的数据集和预训练模型,逐步调整参数,观察对3D重建精度的影响。
典型生态项目
在深度学习和计算机视觉领域,DIST渲染器可以与多个相关技术生态系统结合,例如用于自动标签的3D物体渲染、无需3D监督的不同可微体积渲染,以及基于SDF的形状优化等研究工作。开发者可以在类似场景下探索DIST与其他工具和技术的集成,比如使用DIST作为3D建模和渲染管道的一部分,或者在增强现实、游戏开发等领域探索其潜力。
请注意,实际操作时应详细阅读项目提供的文档,因为具体的版本依赖和配置可能会有所更新,上述步骤提供了一个大致的框架。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00