Typesense向量搜索性能优化:稀疏字段过滤的挑战与解决方案
2025-05-09 15:20:05作者:农烁颖Land
在Typesense 27版本中,用户报告了一个关于向量搜索性能的显著问题:当对稀疏数值字段进行过滤时,查询速度会下降10倍。这个问题特别出现在混合搜索(结合关键词和向量嵌入)场景中,当过滤条件排除了大部分文档时。
问题背景
在一个包含230万文档的集合中,每个文档都有一个"window"字段,取值从0到4。数据分布极不均衡:
- window=0:230万文档
- window=1:234文档
- window=2:28文档
- window=3:2文档
- window=4:7文档
当使用过滤条件排除window=0的文档时(即只查询window=1-4的文档),查询时间从正常的260ms激增至2600ms,无论过滤条件是等于、范围查询还是不等于操作。
技术分析
深入分析后发现,性能问题主要源于HNSW索引的搜索算法行为。当进行混合搜索时,系统会:
- 首先执行过滤操作,将候选文档集缩小到很小的范围(如window=1时只有234个文档)
- 然后对这些文档执行k近邻搜索,但默认的k值(10,000)远大于过滤后的文档数量
- 这导致算法需要进行近乎全图的遍历,以尝试找到足够数量的近邻点
解决方案
Typesense团队在后续版本中实施了多项改进:
- 版本27.1修复:首先解决了范围查询的性能回归问题,使简单查询恢复到<200ms
- flat_search_cutoff参数:引入这个参数控制何时切换到暴力搜索(线性扫描)。当过滤后的文档数小于此阈值时,使用更高效的线性搜索
- 混合搜索优化:在获取向量排名的逻辑中加入对过滤后文档数量的检查,避免不必要的复杂图遍历
最佳实践建议
对于类似场景的用户,建议:
- 对于高度稀疏的过滤字段,考虑设置适当的flat_search_cutoff值(如200-500)
- 评估实际需要的k值,避免设置过大的k值
- 在混合搜索场景中,优先考虑使用Typesense 28或更高版本
- 对于极端稀疏的过滤条件(如只有几个匹配文档),可以考虑预先过滤再执行向量搜索
这个案例展示了在大型向量数据库中处理稀疏数据时的典型挑战,以及如何通过算法选择和参数调优来获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
Ascend Extension for PyTorch
Python
353
420
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
暂无简介
Dart
778
194
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759