Depth-Anything项目的TensorRT加速实现解析
2025-05-29 09:53:06作者:盛欣凯Ernestine
深度估计是计算机视觉领域的重要研究方向,近期由LiheYoung团队开源的Depth-Anything项目引起了广泛关注。该项目提供了三种不同规模的深度估计模型(Small/Base/Large),能够实现高质量的深度预测。本文将重点分析该项目的TensorRT加速实现方案。
项目背景
Depth-Anything是一个基于深度学习的单目深度估计框架,其核心优势在于无需任何深度监督即可训练出性能优异的深度估计模型。项目提供了三种不同规模的预训练模型,分别针对不同计算资源需求的应用场景。
TensorRT加速实现
开发者spacewalk01基于NVIDIA的TensorRT推理引擎,为Depth-Anything项目实现了C++版本的加速方案。TensorRT是NVIDIA推出的高性能深度学习推理优化器和运行时引擎,能够显著提升模型在NVIDIA GPU上的推理速度。
该实现主要完成了以下工作:
- 将原始PyTorch模型转换为TensorRT引擎格式
- 实现完整的C++推理流程
- 优化了预处理和后处理流程
- 提供了完整的部署示例
性能测试
在RTX 3090 GPU上的测试结果表明,TensorRT实现带来了显著的性能提升:
- Depth-Anything-Small模型:推理时间约5ms
- Depth-Anything-Base模型:推理时间约10ms
- Depth-Anything-Large模型:推理时间约20ms
这些性能数据表明,即使是最大的Depth-Anything-Large模型,在TensorRT优化后也能实现实时推理(50FPS),为实际应用部署提供了坚实基础。
技术要点
该TensorRT实现的关键技术包括:
- 模型转换:将PyTorch模型转换为ONNX格式,再进一步优化为TensorRT引擎
- 精度保持:在转换过程中确保模型精度不损失
- 内存优化:合理管理GPU内存,提高资源利用率
- 流水线优化:将预处理、推理和后处理过程高效整合
应用前景
经过TensorRT优化的Depth-Anything模型可以广泛应用于:
- 自动驾驶系统的环境感知
- 增强现实应用中的场景理解
- 机器人导航与避障
- 3D重建与场景建模
总结
Depth-Anything项目结合TensorRT加速实现,为单目深度估计提供了高性能的解决方案。该实现不仅保留了原始模型的优异性能,还大幅提升了推理速度,使得在边缘设备上部署成为可能。随着深度估计技术的不断发展,这类高效实现将为更多实际应用场景提供技术支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210