HFT-CNN 的安装和配置教程
2025-05-28 18:37:23作者:贡沫苏Truman
项目基础介绍
HFT-CNN 是一个基于卷积神经网络(CNN)的文本分类项目,主要用于多标签短文本的分类。项目利用了层次化类别结构来提升分类性能,支持多种模型,包括平坦模型、无微调的层次模型、层次微调模型以及 XML-CNN 模型。
主要编程语言
该项目的主要编程语言是 Python。
项目使用的关键技术和框架
项目使用的关键技术是卷积神经网络,并且基于 Chainer 深度学习框架进行实现。此外,项目使用了 fastText 进行词向量嵌入。
准备工作
在开始安装之前,请确保您的系统中已安装以下环境和依赖项:
- Python 3.5.4 或更高版本
- Chainer 4.0.0 或更高版本
- CuPy 4.0.0 或更高版本
- GPU 环境(用于加速训练)
安装步骤
以下是将 HFT-CNN 项目安装到您系统的详细步骤:
-
克隆或下载项目:
git clone https://github.com/ShimShim46/HFT-CNN.git cd HFT-CNN -
安装项目所需的依赖项。您可以使用 pip 安装 requirements.txt 文件中列出的依赖项:
pip install -r requirements.txt -
如果您希望使用 Anaconda 来管理 Python 环境和依赖项,您可以按照以下步骤操作:
- 下载并安装 Anaconda:Anaconda 下载页面
- 创建虚拟环境:
conda env create -f=hft_cnn_env.yml - 激活虚拟环境:
source activate hft_cnn_env
-
准备数据集。项目目录中的 Sample_data 文件夹包含了一些示例数据,您可以使用自己的数据集替换这些数据。
-
根据需要修改 example.sh 脚本中的模型类型和参数设置。例如,要使用平坦模型进行分类,可以设置:
ModelType=CNN-Flat -
运行 example.sh 脚本来启动训练和分类过程:
bash example.sh
请确保在执行这些步骤时,您已根据项目要求正确配置了您的环境。如果有任何问题,请参考项目的 README 文件或相关问题解决方案。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K