使用Solo.io Gloo实现请求头的外部处理与修改
2025-06-12 11:38:20作者:翟萌耘Ralph
前言
在现代微服务架构中,请求头的处理是一个常见但关键的需求。Solo.io Gloo提供的ExtProc(外部处理)功能允许开发者通过外部服务对请求和响应进行高级处理。本文将详细介绍如何利用Gloo的ExtProc功能实现请求头的动态修改。
ExtProc简介
ExtProc是Gloo Gateway企业版提供的一项高级功能,它允许在请求处理流程中插入外部处理逻辑。通过ExtProc,我们可以:
- 动态修改请求和响应头
- 实现自定义的认证和授权逻辑
- 进行请求和响应的转换
- 收集请求和响应指标
环境准备
在开始之前,需要确保已经完成以下准备工作:
- 已安装Gloo Gateway企业版
- 具备Kubernetes集群操作权限
- 了解基本的Kubernetes和Gloo概念
实现步骤
1. 部署ExtProc服务
首先我们需要部署一个ExtProc服务,这个服务将负责处理请求头的修改逻辑:
apiVersion: apps/v1
kind: Deployment
metadata:
name: ext-proc-grpc
spec:
selector:
matchLabels:
app: ext-proc-grpc
replicas: 1
template:
metadata:
labels:
app: ext-proc-grpc
spec:
containers:
- name: ext-proc-grpc
image: gcr.io/solo-test-236622/ext-proc-example-basic-sink:0.0.2
imagePullPolicy: IfNotPresent
ports:
- containerPort: 18080
apiVersion: v1
kind: Service
metadata:
name: ext-proc-grpc
labels:
app: ext-proc-grpc
annotations:
gloo.solo.io/h2_service: "true"
spec:
ports:
- port: 4444
targetPort: 18080
protocol: TCP
selector:
app: ext-proc-grpc
这个示例使用了预构建的ExtProc服务镜像,它支持通过JSON格式的指令来修改请求头。
2. 配置ExtProc指令格式
ExtProc服务通过instructions头接收操作指令,指令格式如下:
{
"addHeaders": {
"header1": "value1",
"header2": "value2"
},
"removeHeaders": [ "header3", "header4" ]
}
addHeaders: 指定需要添加或修改的头部键值对removeHeaders: 指定需要移除的头部名称列表
3. 配置Gloo启用ExtProc
修改Gloo的默认Settings资源,启用ExtProc功能:
extProc:
grpcService:
extProcServerRef:
name: default-ext-proc-grpc-4444
namespace: gloo-system
filterStage:
stage: AuthZStage
predicate: After
failureModeAllow: false
allowModeOverride: false
processingMode:
requestHeaderMode: SEND
responseHeaderMode: SKIP
关键配置说明:
| 配置项 | 说明 |
|---|---|
grpcService.extProcServerRef |
指定ExtProc服务的位置 |
filterStage |
定义ExtProc在过滤器链中的执行位置 |
failureModeAllow |
控制ExtProc失败时的行为 |
processingMode |
定义请求和响应头的处理模式 |
4. 部署测试应用
为了验证ExtProc功能,我们部署一个httpbin应用作为测试后端:
apiVersion: v1
kind: ServiceAccount
metadata:
name: httpbin
apiVersion: v1
kind: Service
metadata:
name: httpbin
labels:
app: httpbin
spec:
ports:
- name: http
port: 8000
targetPort: 80
selector:
app: httpbin
apiVersion: apps/v1
kind: Deployment
metadata:
name: httpbin
spec:
replicas: 1
selector:
matchLabels:
app: httpbin
version: v1
template:
metadata:
labels:
app: httpbin
version: v1
spec:
serviceAccountName: httpbin
containers:
- image: docker.io/kennethreitz/httpbin
imagePullPolicy: IfNotPresent
name: httpbin
ports:
- containerPort: 80
5. 创建虚拟服务
创建一个虚拟服务将httpbin应用暴露在网关上:
apiVersion: gateway.solo.io/v1
kind: VirtualService
metadata:
name: vs
namespace: gloo-system
spec:
virtualHost:
domains:
- '*'
routes:
- matchers:
- prefix: /
routeAction:
single:
upstream:
name: default-httpbin-8000
namespace: gloo-system
6. 测试ExtProc功能
基本请求测试
首先发送一个简单的请求验证基础功能:
curl -vik $(glooctl proxy url)/get -H "header1: value1" -H "header2: value2"
预期输出中应包含传入的header1和header2。
ExtProc请求头修改测试
发送包含修改指令的请求:
curl -vik $(glooctl proxy url)/get -H "header1: value1" -H "header2: value2" -H 'instructions: {"addHeaders":{"header3":"value3","header4":"value4"},"removeHeaders":["instructions", "header2"]}'
预期结果:
- header2被移除
- header3和header4被添加
- instructions头被移除
修改处理模式测试
将Settings中的requestHeaderMode改为SKIP后再次测试:
curl -vik $(glooctl proxy url)/get -H "header1: value1" -H "header2: value2" -H 'instructions: {"addHeaders":{"header3":"value3","header4":"value4"},"removeHeaders":["instructions", "header2"]}'
预期结果:
- 所有原始头保持不变
- ExtProc修改指令未生效
最佳实践
- 性能考虑:ExtProc会增加请求处理延迟,建议只对需要特殊处理的请求启用
- 错误处理:合理配置
failureModeAllow,在开发环境可以设为true便于调试 - 安全考虑:确保ExtProc服务本身的安全性,避免成为攻击入口
- 监控:对ExtProc服务的性能和错误率进行监控
清理资源
完成测试后,可以删除创建的资源:
kubectl delete deployment ext-proc-grpc httpbin
kubectl delete service ext-proc-grpc httpbin
kubectl delete servicaccount httpbin
kubectl delete virtualservice vs -n gloo-system
总结
通过Gloo的ExtProc功能,我们可以灵活地实现请求头的动态修改,满足各种复杂的业务需求。这种外部处理的方式提供了极大的灵活性,同时保持了Gloo配置的简洁性。在实际应用中,可以根据业务需求扩展ExtProc服务的功能,实现更复杂的处理逻辑。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217