Seurat绘图功能增强:为多图组合添加全局标题
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。它提供了丰富的可视化功能,其中FeaturePlot函数常用于展示基因表达模式。然而,当需要将多个基因表达图组合展示时,用户经常需要为整个组合图添加一个全局标题,这在Seurat的默认功能中并不直接支持。
问题背景
在分析单细胞数据时,研究人员通常会同时观察多个标记基因的表达情况。例如,在研究Sertoli细胞时,可能需要同时查看SOX9、WT1、AMH和CITED1等标记基因的表达模式。使用Seurat的FeaturePlot函数可以轻松生成这些基因的单独表达图,但将这些图组合起来并添加一个说明性的全局标题却需要额外的处理。
解决方案
原始解决方案
最初提出的解决方案是创建一个自定义函数AddTitle,该函数利用wrap_plots和grid::textGrob来在组合图上方添加标题:
AddTitle <- function(seurat_plot, title, ratio=14) {
seurat_plot %>% {
wrap_plots(
grid::textGrob(title, gp=gpar(cex=3)),
.,
heights=c(1,ratio),
widths=c(ceiling(sqrt(length(seurat_plot))),1),
ncol=1
)
}
}
使用示例:
FeaturePlot(scdata, c('SOX9','WT1','AMH','CITED1')) %>%
AddTitle('Sertoli cells markers')
更简洁的解决方案
实际上,Seurat的绘图系统基于ggplot2和patchwork包,可以直接使用patchwork提供的plot_annotation功能来添加全局标题,这种方法更加简洁:
FeaturePlot(scdata, c('SOX9','WT1','AMH','CITED1')) +
patchwork::plot_annotation('Sertoli cells markers')
技术细节
-
patchwork包:这是一个专门用于组合和排列ggplot2图形的R包,提供了强大的图形布局和注释功能。
-
plot_annotation函数:可以添加全局标题、子标题和标签等注释元素,支持通过
title参数指定主标题。 -
样式定制:可以通过
theme参数进一步定制标题的样式,如字体大小、颜色和对齐方式等。
最佳实践建议
-
对于简单的标题添加需求,优先使用patchwork的
plot_annotation方法,代码更简洁且易于维护。 -
当需要更复杂的布局或特殊样式时,可以考虑自定义函数,但要注意保持代码的可读性。
-
在发表级别的图形中,建议统一标题样式与正文中的图形风格保持一致。
总结
Seurat与patchwork包的结合为单细胞数据的可视化提供了强大的工具链。通过plot_annotation添加全局标题的方法不仅代码简洁,而且保持了ggplot2图形系统的灵活性。这一技巧可以广泛应用于各种需要组合多个单细胞基因表达图的场景,帮助研究人员更清晰地展示他们的发现。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00