【亲测免费】 CTGAN 开源项目使用教程
2026-01-23 06:41:09作者:咎岭娴Homer
1. 项目介绍
CTGAN(Conditional Tabular GAN)是一个基于深度学习的合成表格数据生成器,能够从真实数据中学习并生成高保真的合成数据。该项目是 The Synthetic Data Vault Project 的一部分,由 DataCebo 开发和维护。CTGAN 实现了在 2019 年 NeurIPS 会议上提出的 Conditional GAN 模型,用于建模表格数据。
主要特点
- 高保真合成数据生成:能够生成与真实数据高度相似的合成数据。
- 支持多种数据类型:适用于连续和离散数据的生成。
- 易于集成:可以通过 SDV 库或直接使用 CTGAN 库进行集成。
2. 项目快速启动
安装 CTGAN
你可以通过 pip 或 conda 安装 CTGAN:
# 使用 pip 安装
pip install ctgan
# 使用 conda 安装
conda install -c pytorch -c conda-forge ctgan
使用示例
以下是一个简单的使用示例,展示了如何使用 CTGAN 生成合成数据:
from ctgan import CTGAN
from ctgan import load_demo
# 加载示例数据集
real_data = load_demo()
# 定义离散列
discrete_columns = [
'workclass', 'education', 'marital-status', 'occupation',
'relationship', 'race', 'sex', 'native-country', 'income'
]
# 初始化 CTGAN 模型
ctgan = CTGAN(epochs=10)
# 训练模型
ctgan.fit(real_data, discrete_columns)
# 生成合成数据
synthetic_data = ctgan.sample(1000)
# 打印生成的数据
print(synthetic_data.head())
3. 应用案例和最佳实践
应用案例
CTGAN 可以广泛应用于以下场景:
- 数据隐私保护:在数据共享和发布时,使用合成数据替代真实数据,保护用户隐私。
- 数据增强:在数据量不足的情况下,生成合成数据以增强训练集。
- 模型测试:使用合成数据进行模型测试,评估模型的泛化能力。
最佳实践
- 数据预处理:确保输入数据格式正确,连续数据应为浮点数,离散数据应为整数或字符串。
- 模型调优:通过调整
epochs和batch_size等参数,优化模型性能。 - 质量评估:使用 SDV 提供的工具评估合成数据的质量和隐私性。
4. 典型生态项目
R Interface for CTGAN
这是一个将 CTGAN 功能引入 R 语言的包装器项目,方便 R 用户使用 CTGAN 生成合成数据。项目地址:R Interface for CTGAN
CTGAN Server CLI
这是一个用于将 CTGAN 部署到远程服务器的工具包,由 Timothy Pillow 开发。项目地址:CTGAN Server CLI
The Synthetic Data Vault Project
这是 CTGAN 所属的合成数据生态系统,包含多个支持合成数据生成的库,如数据发现与转换、多种机器学习模型等。项目地址:The Synthetic Data Vault Project
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1