Chonkie项目v1.0.3版本发布:新增可视化工具与多语言分块支持
2025-07-07 21:39:27作者:庞队千Virginia
Chonkie是一个专注于文本分块处理的Python库,旨在为开发者提供高效、灵活的文本分块解决方案。在最新发布的v1.0.3版本中,Chonkie带来了两项重要功能更新:全新的可视化工具Visualizer和多语言分块支持Recipes,同时对核心分块器进行了性能优化。
可视化工具Visualizer
新加入的Visualizer工具为文本分块过程提供了直观的可视化反馈,极大提升了开发者调试和分析分块结果的效率。这个工具支持两种输出方式:
- 终端输出:通过print方法直接在终端显示带有高亮标记的分块结果
- HTML保存:将分块结果保存为HTML文件,便于分享和进一步分析
使用Visualizer非常简单,只需几行代码即可实现分块结果的可视化:
from chonkie import Visualizer
viz = Visualizer()
viz.print(chunks) # 在终端打印彩色分块结果
viz.save("result.html", chunks) # 保存为HTML文件
可视化效果清晰展示了不同层级的分块结构,帮助开发者快速识别分块质量,特别适合调试复杂的分块规则和验证分块效果。
多语言分块支持Recipes
v1.0.3版本引入了Recipes概念,为不同语言和文档类型提供了开箱即用的分块配置。目前支持的语言包括:
- 英语(en)
- 印地语(hi)
- 中文(zh)
- 日语(jp)
- 韩语(ko)
同时支持Markdown文档的特殊分块处理。使用Recipes可以简化分块器的初始化过程:
from chonkie import RecursiveChunker
# 初始化Markdown文档分块器
markdown_chunker = RecursiveChunker.from_recipe("markdown", lang="en")
# 初始化印地语文本分块器
hindi_chunker = RecursiveChunker.from_recipe(lang="hi")
这一特性极大降低了处理多语言文本时的配置复杂度,开发者无需手动设置各种语言特有的分界符和规则。
性能优化
v1.0.3版本还对核心组件进行了多项性能改进:
- RecursiveChunker:重构了索引查找逻辑,移除了低效的.find操作,提升了分块速度
- SentenceChunker:移除了估计和反馈机制,简化了处理流程
- WordTokenizer:修正了count_tokens方法的实现,现在使用更高效的.tokenize而非.encode
这些优化使得Chonkie在处理大规模文本时表现更加出色,特别是在递归分块和句子分块场景下。
其他改进
- 修复了RecursiveRules.from_dict()方法中因.pop操作导致的KeyError问题
- 解决了RecursiveChunker中空格处理不完整的问题,确保文本重构的准确性
- 完善了包结构,确保所有模块都能正确导入
Chonkie v1.0.3版本的这些更新显著提升了库的易用性和功能性,特别是可视化工具和多语言支持的加入,使得文本分块处理变得更加直观和便捷。对于需要处理多语言内容或复杂文档结构的开发者来说,这些新特性将大大提高工作效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882