革命性符号优化器:为什么Lion比传统自适应学习率更高效
还在为深度学习中复杂的优化器参数调优而烦恼吗?AdamW、Adafactor等自适应学习率优化器虽然强大,但超参数敏感、内存占用大、运行速度慢。Google Brain AutoML团队通过符号程序搜索发现的Lion(EvoLved Sign Momentum)优化器,正在重新定义优化算法的设计范式!
读完本文你将获得:
- Lion优化器的核心原理和工作机制
- 相比传统优化器的显著优势对比
- 实际应用中的超参数调优指南
- 多领域性能表现验证
Lion优化器的核心突破
Lion优化器通过符号程序搜索自动发现,其核心创新在于使用符号(sign)操作替代传统的梯度缩放。从算法实现lion/lion_pytorch.py可以看到:
# 权重更新:使用符号操作
update = exp_avg * beta1 + grad * (1 - beta1)
p.add_(update.sign_(), alpha=-group['lr'])
这种设计产生了三个关键优势:
- 内存效率翻倍:仅需保存动量,无需二阶矩估计
- 运行速度提升:简化计算,获得2-15%的速度提升
- 数值稳定性增强:符号操作避免梯度爆炸问题
性能表现全面超越
图像分类领域
在ImageNet数据集上,Lion在多种架构上都超越了AdamW。ViT-L/16模型在使用Lion训练后,达到了之前ViT-H/14使用AdamW的性能,而模型大小仅为一半!
大规模预训练优势
在JFT-300M数据集上,Lion节省了高达5倍的预训练成本,这在大模型时代具有重要意义。
多模态学习突破
在视觉-语言对比学习任务中,Lion在多个零样本图像分类和图文检索基准上均超越了AdamW。
实际应用调优指南
学习率设置
Lion的学习率通常比AdamW小3-10倍,这是由于其更新步长更大的特性:
- Lion: lr=1e-4, λ=10.0
- AdamW: lr=1e-3, λ=1.0
批量大小选择
Lion偏好较大的批量大小,但在小批量情况下仍表现稳健。实验表明,Lion在批量大小4,096时达到最佳性能,而AdamW的最佳批量大小为256。
超参数鲁棒性
Lion对超参数的选择更加鲁棒,这大大降低了调优难度,使其更适合实际生产环境。
技术实现细节
Lion在TensorFlow 2.0中的实现lion/lion_tf2.py展示了其简洁性:
# TensorFlow实现核心更新逻辑
update = m * coefficients['beta_1_t'] + grad * coefficients['one_minus_beta_1_t']
var_t = var.assign_sub(coefficients['lr'] * tf.math.sign(update))
总结与展望
Lion优化器通过符号程序搜索发现的简单而有效的算法,在多个维度上超越了传统自适应学习率方法:
- 内存效率:内存占用减半,支持更大模型训练
- 运行速度:计算简化带来显著速度提升
- 性能表现:在图像、语言、多模态任务中全面领先
- 易用性:超参数调优更简单,鲁棒性更强
Lion已经成功部署在Google搜索广告CTR模型等生产系统中,证明了其在实际应用中的价值。随着符号程序搜索技术的不断发展,未来可能会有更多优秀的优化算法被发现。
立即尝试Lion优化器,体验下一代优化算法带来的性能飞跃!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00




