Graphiti项目集成第三方模型的技术实现方案
Graphiti作为一款强大的开源工具,为开发者提供了灵活的模型集成能力。本文将深入探讨如何在Graphiti项目中集成DeepSeek语言模型和HuggingFace嵌入模型的技术实现方案。
关于DeepSeek LLM的集成
Graphiti项目本身并不直接内置DeepSeek语言模型的支持,但提供了多种灵活的集成方式:
-
通过标准API接口集成
如果使用Ollama等工具在本地部署DeepSeek模型,可以将其配置为提供标准兼容的API端点。这种情况下,开发者可以使用Graphiti提供的generic_api_client客户端,只需将模型名称设置为"deepseek-chat"即可完成集成。 -
第三方API服务集成
对于通过第三方API服务访问DeepSeek模型的情况,Graphiti已经内置了对Groq等服务的支持。如果目标服务尚未被Graphiti原生支持,开发者可以基于现有代码结构实现新的llm_client模块。
HuggingFace嵌入模型的集成方案
Graphiti目前对HuggingFace模型的支持主要体现在跨编码器(Cross-Encoder)方面,但尚未提供现成的HuggingFace嵌入模型客户端实现。不过开发者可以参考项目中已有的BGE Reranker客户端实现(bge_reranker_client.py)来自行构建:
-
实现思路
需要创建一个新的嵌入客户端类,继承自Graphiti的基础嵌入客户端,并实现HuggingFace模型加载和推理的相关逻辑。 -
技术要点
- 模型加载:使用transformers库加载指定的HuggingFace模型
- 输入处理:适配Graphiti的输入格式要求
- 输出转换:确保输出向量符合Graphiti的规范
扩展与定制
Graphiti的架构设计充分考虑了扩展性,开发者可以根据实际需求:
-
添加新的模型客户端
通过实现标准的客户端接口,可以轻松集成更多第三方模型服务。 -
自定义部署方案
无论是本地部署的模型还是云端服务,只要提供标准化的API接口,都可以与Graphiti无缝集成。
这种灵活的架构设计使得Graphiti能够适应各种不同的AI应用场景,为开发者提供了极大的便利性和可扩展性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00