Graphiti项目集成第三方模型的技术实现方案
Graphiti作为一款强大的开源工具,为开发者提供了灵活的模型集成能力。本文将深入探讨如何在Graphiti项目中集成DeepSeek语言模型和HuggingFace嵌入模型的技术实现方案。
关于DeepSeek LLM的集成
Graphiti项目本身并不直接内置DeepSeek语言模型的支持,但提供了多种灵活的集成方式:
-
通过标准API接口集成
如果使用Ollama等工具在本地部署DeepSeek模型,可以将其配置为提供标准兼容的API端点。这种情况下,开发者可以使用Graphiti提供的generic_api_client客户端,只需将模型名称设置为"deepseek-chat"即可完成集成。 -
第三方API服务集成
对于通过第三方API服务访问DeepSeek模型的情况,Graphiti已经内置了对Groq等服务的支持。如果目标服务尚未被Graphiti原生支持,开发者可以基于现有代码结构实现新的llm_client模块。
HuggingFace嵌入模型的集成方案
Graphiti目前对HuggingFace模型的支持主要体现在跨编码器(Cross-Encoder)方面,但尚未提供现成的HuggingFace嵌入模型客户端实现。不过开发者可以参考项目中已有的BGE Reranker客户端实现(bge_reranker_client.py)来自行构建:
-
实现思路
需要创建一个新的嵌入客户端类,继承自Graphiti的基础嵌入客户端,并实现HuggingFace模型加载和推理的相关逻辑。 -
技术要点
- 模型加载:使用transformers库加载指定的HuggingFace模型
- 输入处理:适配Graphiti的输入格式要求
- 输出转换:确保输出向量符合Graphiti的规范
扩展与定制
Graphiti的架构设计充分考虑了扩展性,开发者可以根据实际需求:
-
添加新的模型客户端
通过实现标准的客户端接口,可以轻松集成更多第三方模型服务。 -
自定义部署方案
无论是本地部署的模型还是云端服务,只要提供标准化的API接口,都可以与Graphiti无缝集成。
这种灵活的架构设计使得Graphiti能够适应各种不同的AI应用场景,为开发者提供了极大的便利性和可扩展性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00