Nocobase v1.7.0-beta.32版本发布:多关键词过滤与批量打印功能升级
Nocobase是一个开源的、面向开发者的低代码开发平台,它提供了丰富的功能模块和灵活的扩展能力,帮助开发者快速构建企业级应用。本次发布的v1.7.0-beta.32版本带来了多项功能增强和问题修复,特别是在数据过滤和打印功能方面有了显著改进。
核心功能更新
单行文本字段多关键词过滤
在这个版本中,Nocobase对单行文本字段的过滤功能进行了重要升级。现在用户可以在单个文本字段中输入多个关键词进行组合过滤,这大大提高了数据查询的灵活性和精确度。例如,在用户管理模块中,管理员可以同时输入"北京"和"销售"两个关键词,快速筛选出位于北京且属于销售部门的员工记录。
这项功能的实现采用了智能分词技术,系统会自动识别用户输入中的多个关键词(通常以空格分隔),并在后台构建复合查询条件。这种设计既保持了用户界面的简洁性,又提供了强大的查询能力。
模板批量打印支持
模板打印功能新增了批量处理能力,这是对原有单条记录打印功能的重要扩展。在企业应用中,经常需要批量打印合同、发票或报表等文档,新功能可以显著提高这类场景的工作效率。
批量打印的实现考虑了性能优化和内存管理,特别是在处理大量数据时,系统会采用分批次处理策略,避免因数据量过大导致的内存溢出问题。同时,打印任务队列管理确保了多个打印请求的有序执行。
工作流与审批功能优化
工作流模块在本版本中获得了多项改进,特别是审批节点的分配逻辑更加完善。新增的"委托"和"添加其他审批人"功能使得审批流程更加灵活,能够适应更复杂的业务场景。
审批范围控制也得到了增强,系统现在能够更精确地识别和处理审批人的权限范围,确保审批流程既安全又高效。这些改进特别适合大型组织中跨部门协作的场景。
数据关联与表单处理改进
在数据关联处理方面,本次更新修复了几个关键问题:
-
级联组件在模态框中初始化时无法加载关联数据的问题已解决,现在关联数据能够正确显示和选择。
-
子表单中暴露的关联字段提交问题得到修复,确保了关联数据的完整性和一致性。
-
关联选择记录表的过滤逻辑优化,现在能够正确排除已关联的记录,避免重复关联。
这些改进使得Nocobase在复杂数据关系的处理上更加可靠,特别是在一对多、多对多等关联场景下表现更佳。
其他重要修复与优化
-
数据库导入功能增强了对空字符串单元格的处理,避免了因空值导致的导入错误。
-
文件管理器的类型定义更加完善,提高了代码的健壮性和开发体验。
-
工作流堆栈限制逻辑优化,解决了集合事件处理中的潜在问题。
-
AI集成配置页面切换时的内容显示问题已修复,提升了配置体验。
-
操作面板现在能够正确读取路由基础路径,更好地适应桌面环境。
总结
Nocobase v1.7.0-beta.32版本在功能完善和问题修复方面取得了显著进展,特别是多关键词过滤和批量打印功能的加入,使得平台在数据处理和输出能力上更加强大。工作流和审批功能的持续优化也体现了Nocobase在企业流程自动化方面的专注。这些改进共同提升了平台的稳定性、易用性和适用性,为开发者构建复杂业务系统提供了更坚实的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00