ClickHouse向量相似度索引的工作原理与性能优化
引言
在ClickHouse的MergeTree引擎家族中,向量相似度索引是一项重要的功能特性,它能够显著提升近似最近邻(ANN)搜索的查询效率。本文将深入解析ClickHouse中HNSW(分层可导航小世界)索引的工作原理,特别是其在查询执行过程中如何优化数据访问。
向量索引的基本概念
ClickHouse目前主要支持HNSW这一种向量索引类型。HNSW是一种基于图的近似最近邻搜索算法,它通过构建多层图结构来加速相似度搜索。与传统索引不同,向量索引专门为高维向量数据的相似性搜索而设计。
索引与数据组织的关系
在ClickHouse中,数据被组织为"颗粒"(granules)这一基本单元。每个颗粒包含一定数量的行数据,这些颗粒是数据读取的最小单位。当创建向量索引时,系统会为每个数据部分(part)构建一个完整的HNSW索引结构。
查询执行过程解析
-
查询规划阶段:当执行带有
EXPLAIN indexes=1的查询时,系统会先进行索引分析,确定哪些颗粒可能包含与查询向量最相似的数据。 -
索引搜索阶段:HNSW索引会被用来快速定位潜在的相关向量,这个过程会确定需要读取的具体颗粒。
-
数据读取阶段:系统只读取那些被索引标记为可能包含相关数据的颗粒,而不是扫描整个数据集。
性能优化机制
向量索引的核心优化在于它能显著减少需要读取的数据量。例如:
- 在小规模数据集中(如4个颗粒),搜索3个最近邻可能只需要读取2个颗粒
- 在大规模数据集中(如100万条记录的575个颗粒),搜索10个最近邻可能只需要访问10个颗粒
这种优化效果在EXPLAIN输出中表现为"Granules: x/y"的形式,其中x表示实际需要读取的颗粒数,y表示总颗粒数。
实际应用建议
-
合理设置颗粒大小:颗粒大小会影响索引的精度和查询性能,需要根据数据规模和查询特点进行调优。
-
理解EXPLAIN输出:通过分析EXPLAIN结果中的颗粒过滤情况,可以评估索引的有效性。
-
考虑数据分布:均匀分布的数据通常能获得更好的索引效果,极端分布可能导致索引效率下降。
总结
ClickHouse的向量相似度索引通过HNSW算法实现了高效的近似最近邻搜索,其核心优势在于查询时能够智能地跳过不相关的数据颗粒。理解这一机制对于优化向量搜索类查询至关重要,特别是在处理大规模高维向量数据时,合理利用这一特性可以带来显著的性能提升。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00