HAProxy高CPU使用率问题的分析与解决方案
问题背景
HAProxy作为一款高性能的负载均衡软件,在升级到3.1.3版本后,部分用户报告了CPU使用率异常升高的问题。具体表现为在中等至高负载环境下运行约1小时后,CPU使用率从预期的1800%飙升至4000%以上,且线程会卡在100% CPU利用率状态,直到服务重启。
问题分析
经过深入分析,开发团队发现问题的核心在于HAProxy的负载均衡算法实现中存在的锁竞争问题。具体表现为:
-
Leastconn算法锁竞争:当使用leastconn负载均衡算法时,多个线程会争抢同一个锁来更新服务器连接数,在高并发场景下形成锁竞争风暴。
-
线程转储机制影响:当线程因锁竞争而阻塞时,HAProxy的看门狗机制会触发线程转储(thread dump),而生成堆栈跟踪信息的过程本身也需要获取锁,进一步加剧了锁竞争。
-
时间函数重入问题:在生成日志和转储信息时调用的get_localtime()函数内部使用了glibc的锁,当信号中断处理时可能导致死锁。
解决方案
开发团队针对上述问题实施了一系列优化措施:
1. Leastconn算法异步化改造
通过将服务器连接数更新操作从同步改为异步,显著减少了锁竞争:
- 新增server_requeue回调接口
- 为每个服务器分配专用任务进行异步排队
- 在检测到锁竞争时推迟服务器位置调整
这一优化在实际测试中带来了显著性能提升,某些环境下吞吐量提高了60%,CPU使用率降低了50%以上。
2. 线程转储机制优化
针对线程转储过程中的问题进行了多项改进:
- 限制同时进行的符号解析操作
- 优化信号处理逻辑避免重入
- 分离信号处理相关的状态位管理
- 在信号处理中简化时间获取逻辑
3. 配置参数调整建议
对于暂时无法升级的用户,可以通过调整配置参数缓解问题:
- 增加
warn-blocked-traffic-after参数值(如从默认100ms调整到1000ms) - 避免在高负载时频繁执行"show threads"等管理命令
性能对比
优化后的版本在多种环境下表现出色:
- ARM平台:吞吐量提升3.6倍,CPU使用率降低90%
- AMD平台:吞吐量提升60%,CPU使用率降低57%
- 实际生产环境:平均RPS提升20%,服务器间负载差异显著减小
总结
HAProxy团队通过深入分析高CPU使用率问题的根本原因,从算法实现、锁机制和信号处理等多个层面进行了系统性优化。这些改进不仅解决了特定版本的问题,还显著提升了软件在高并发场景下的整体性能表现。建议受影响的用户升级到包含这些修复的版本,以获得更稳定高效的负载均衡服务。
对于系统管理员和运维人员,在类似的高并发场景下,也应当关注:
- 负载均衡算法的选择与调优
- 多线程环境下的锁竞争问题
- 诊断工具本身对系统性能的影响
- 关键参数的合理配置
这些经验对于构建高性能、高可用的负载均衡架构具有普遍参考价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00