HAProxy高CPU使用率问题的分析与解决方案
问题背景
HAProxy作为一款高性能的负载均衡软件,在升级到3.1.3版本后,部分用户报告了CPU使用率异常升高的问题。具体表现为在中等至高负载环境下运行约1小时后,CPU使用率从预期的1800%飙升至4000%以上,且线程会卡在100% CPU利用率状态,直到服务重启。
问题分析
经过深入分析,开发团队发现问题的核心在于HAProxy的负载均衡算法实现中存在的锁竞争问题。具体表现为:
-
Leastconn算法锁竞争:当使用leastconn负载均衡算法时,多个线程会争抢同一个锁来更新服务器连接数,在高并发场景下形成锁竞争风暴。
-
线程转储机制影响:当线程因锁竞争而阻塞时,HAProxy的看门狗机制会触发线程转储(thread dump),而生成堆栈跟踪信息的过程本身也需要获取锁,进一步加剧了锁竞争。
-
时间函数重入问题:在生成日志和转储信息时调用的get_localtime()函数内部使用了glibc的锁,当信号中断处理时可能导致死锁。
解决方案
开发团队针对上述问题实施了一系列优化措施:
1. Leastconn算法异步化改造
通过将服务器连接数更新操作从同步改为异步,显著减少了锁竞争:
- 新增server_requeue回调接口
- 为每个服务器分配专用任务进行异步排队
- 在检测到锁竞争时推迟服务器位置调整
这一优化在实际测试中带来了显著性能提升,某些环境下吞吐量提高了60%,CPU使用率降低了50%以上。
2. 线程转储机制优化
针对线程转储过程中的问题进行了多项改进:
- 限制同时进行的符号解析操作
- 优化信号处理逻辑避免重入
- 分离信号处理相关的状态位管理
- 在信号处理中简化时间获取逻辑
3. 配置参数调整建议
对于暂时无法升级的用户,可以通过调整配置参数缓解问题:
- 增加
warn-blocked-traffic-after参数值(如从默认100ms调整到1000ms) - 避免在高负载时频繁执行"show threads"等管理命令
性能对比
优化后的版本在多种环境下表现出色:
- ARM平台:吞吐量提升3.6倍,CPU使用率降低90%
- AMD平台:吞吐量提升60%,CPU使用率降低57%
- 实际生产环境:平均RPS提升20%,服务器间负载差异显著减小
总结
HAProxy团队通过深入分析高CPU使用率问题的根本原因,从算法实现、锁机制和信号处理等多个层面进行了系统性优化。这些改进不仅解决了特定版本的问题,还显著提升了软件在高并发场景下的整体性能表现。建议受影响的用户升级到包含这些修复的版本,以获得更稳定高效的负载均衡服务。
对于系统管理员和运维人员,在类似的高并发场景下,也应当关注:
- 负载均衡算法的选择与调优
- 多线程环境下的锁竞争问题
- 诊断工具本身对系统性能的影响
- 关键参数的合理配置
这些经验对于构建高性能、高可用的负载均衡架构具有普遍参考价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00