Pydantic 中 URL 类型的序列化行为解析
2025-05-09 20:45:29作者:董灵辛Dennis
在 Python 数据验证库 Pydantic 的最新版本中,URL 类型字段在模型序列化为字典时的表现行为发生了一些变化,这可能会影响开发者对数据结构的预期和处理方式。
URL 类型的序列化表现
当使用 Pydantic 模型处理包含 URL 字段的数据时,从版本 2.10.2 开始,URL 类型字段在序列化为字典时会保留其类型信息。例如,一个包含 AnyUrl 字段的模型在调用 model_dump() 方法后,输出结果会显示为 AnyUrl('实际URL') 的形式,而不是直接输出字符串形式的 URL。
这种行为变化源于 Pydantic 对 URL 类型处理方式的改进。新版本更倾向于保持与具体 Python 类一致的行为,使得序列化输出能够反映原始数据类型信息。
对开发者的影响
这种变化主要影响以下场景:
- 单元测试比较:当开发者需要将模型序列化结果与预期字典进行比较时,类型信息的保留可能导致比较失败
- API 响应:如果直接将序列化结果作为 API 响应返回,客户端可能需要额外处理这些类型信息
- 数据持久化:存储序列化结果时可能包含不必要的类型信息
解决方案
Pydantic 提供了多种方式来自定义序列化行为:
1. 使用 PlainSerializer
可以通过类型注解配合 PlainSerializer 来定制序列化行为:
from typing import Annotated
from pydantic import BaseModel, AnyUrl, PlainSerializer
class UrlModel(BaseModel):
url: Annotated[AnyUrl, PlainSerializer(lambda x: str(x))]
2. 使用字段序列化器
也可以通过 field_serializer 装饰器实现相同效果:
from pydantic import BaseModel, AnyUrl, field_serializer
class UrlModel(BaseModel):
url: AnyUrl
@field_serializer('url')
def serialize_url(self, url: AnyUrl):
return str(url)
3. 模型配置
对于需要全局处理的情况,可以在模型配置中指定序列化排除规则:
class UrlModel(BaseModel):
url: AnyUrl
class Config:
json_encoders = {
AnyUrl: str
}
最佳实践建议
- 在需要与其他系统交互的场景下,建议显式地将 URL 转换为字符串形式
- 对于内部处理逻辑,可以保留类型信息以便于调试和类型检查
- 在编写单元测试时,考虑使用专门的比较函数或预处理步骤来处理类型差异
- 对于大型项目,建议统一序列化策略以保持一致性
理解这些序列化行为的变化有助于开发者更好地利用 Pydantic 的强大功能,同时避免在数据处理过程中出现意外问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1