VisionDK 使用指南
2024-09-12 09:14:59作者:柯茵沙
1. 目录结构及介绍
VisionDK 是一个基于PyTorch的强大图像分类和人脸识别基准库。以下是该项目的基本目录结构及其简介:
.
├── config # 配置文件夹,存放模型训练和数据集准备的相关配置yaml文件
├── datasets # 数据处理相关代码,可能包括数据加载器等
├── distill # 模型蒸馏相关的代码或脚本
├── engine # 主要的训练和评估引擎
├── models # 含有各种预训练模型的实现,如ResNet、EfficientNet、Swin Transformer等
├── oxford-iiit-pet # 可能是特定数据集的处理或示例
├── scripts # 辅助脚本,如数据集分割、可视化工具等
├── structure # 网络架构定义或辅助结构
├── tools # 提供的一些实用工具,比如数据增强预览、模型转换等
├── utils # 共享的实用函数集合
├── .gitignore # Git忽略文件列表
├── LICENSE # 开源许可证,采用GPL-3.0许可
├── README.md # 项目的主要说明文件
├── main.py # 主入口文件,用于启动训练或评估过程
├── requirements.txt # 项目依赖的第三方库列表
└── validate.py # 可能用于验证模型性能的脚本
2. 项目启动文件介绍
-
main.py
这是项目的核心启动文件,支持多种场景下的训练和评估。通过命令行参数指定不同的配置文件(--cfgs
)来控制训练流程,如图像分类任务可以这样启动:python main.py --cfgs configs/task/pet.yaml
。对于多GPU环境,可以通过设置CUDA_VISIBLE_DEVICES
并使用torchrun
来并行执行。 -
validate.py
尽管在提供的信息中没有直接提及validate.py
的具体细节,但通常它用于验证模型的性能,检查模型在测试集上的表现,这对于模型开发和调优至关重要。
3. 项目的配置文件介绍
配置文件位于config
目录下,这些.yaml
文件包含了实验的详细配置,包括但不限于:
- 模型选择:定义使用的网络架构(例如:visiondk/configs/classification/pet.yaml)。
- 数据集路径:训练与验证数据集的位置。
- 优化器设置:学习率、权重衰减等超参数。
- 训练设置:批次大小、总迭代次数、是否启用同步批归一化(SyncBN)等。
- 损失函数:如ArcFace、CircleLoss的选择用于特定任务。
- 策略选项:包括进度学习、在线增强、美丽训练界面等高级特性。
配置文件提供了高度的可定制性,允许用户调整以适应不同需求的实验环境。
在使用项目前,请确保按照README.md
中的安装指南正确设置了环境,并且根据自己的具体需求修改配置文件中的相应字段。通过上述步骤,你可以顺利地启动你的视觉识别任务。
登录后查看全文
热门项目推荐
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen-Image我们隆重推出 Qwen-Image,这是通义千问系列中的图像生成基础模型,在复杂文本渲染和精准图像编辑方面取得重大突破。Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,面向全球开发者、创造者及科技爱好者,吹响AI应用开发的集结号!010- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0259- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析8 freeCodeCamp课程页面空白问题的技术分析与解决方案9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
819
487

openGauss kernel ~ openGauss is an open source relational database management system
C++
120
175

React Native鸿蒙化仓库
C++
163
252

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
322
1.07 K

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
172
259

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.05 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
818
22

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
719
102

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
568
51