Astropy项目FITS表格数据显示问题分析与修复
问题背景
在Astropy项目中,当用户使用numpy 2.0及以上版本时,尝试显示FITS文件表格数据会遇到一个格式化错误。该错误表现为当尝试打印或显示表格数据时,系统会抛出"ValueError: Unknown format code 'd' for object of type 'float'"异常。
问题根源分析
经过深入调查,发现问题源于numpy 2.0版本中对数组打印格式处理的修改。具体来说,numpy 2.0中的PR #24191改变了整数格式化方式,从传统的%格式化变为f-string加str.format的组合方式。
在Astropy处理FITS表格数据时,存在一个关键的不一致性:对于某些经过缩放(scaled)的列,底层存储格式(TFORM)与显示格式(TDISP)不一致。例如在报告中提到的"ST_VIDEO_VDC"列:
- TFORM45 = '1B' (1个无符号字节)
- TSCAL45 = 0.01953125 (数据缩放因子)
- TZERO45 = 0.1 (零基线偏移)
- TDISP45 = 'F6.3' (显示格式为6位浮点数,3位小数)
这种缩放数据在Astropy内部被正确解释为浮点数,但在格式化显示时,numpy 2.0的格式化逻辑会尝试使用整数格式来显示这些实际上是浮点数的值,从而导致错误。
技术细节
问题的核心在于Astropy的FITS_rec类(继承自numpy.recarray)在显示数据时的处理流程:
- 当访问表格数据时,Astropy会根据TFORM、TSCAL等关键字正确地将原始字节数据转换为缩放后的浮点值
- 但在格式化显示时,numpy的array2string函数基于未缩放的原始数组类型(通过asarray(a)获取)选择格式化函数
- 然后这个格式化函数被应用于缩放后的数据,导致类型不匹配
在numpy 1.x版本中,由于%格式化对类型转换较为宽松,这种不一致性被掩盖了;而numpy 2.0更严格的类型检查使问题暴露出来。
解决方案讨论
开发团队讨论了多种可能的解决方案:
- 修改格式化函数:将整数格式从"nd"改为"n.0f",但这可能导致大整数显示问题且会静默失败
- 强制转换为缩放数组:在调用array2string前将数据完整转换为缩放后的数组,但这可能影响性能且对VLA列处理复杂
- 自定义array2string实现:借鉴Masked数组的处理方式,实现专门的格式化逻辑
- 统一数据类型推断:修正Astropy内部对列数据类型的推断逻辑,确保缩放前后一致
经过评估,团队倾向于实现自定义的格式化逻辑或修正数据类型推断,因为这些方案能从根本上解决问题而不引入新的隐患。
结论
这个问题揭示了Astropy在处理FITS表格数据缩放时存在的数据类型推断不一致问题。随着numpy 2.0引入更严格的类型检查,这类潜在问题被暴露出来。开发团队正在研究最合适的修复方案,既要保证兼容性,又要维持代码的清晰性和性能。
对于用户而言,临时解决方案是降级到numpy 1.x版本,但长期来看应等待Astropy发布包含此问题修复的正式版本。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00