HamGNN 的安装和配置教程
项目的基础介绍和主要的编程语言
HamGNN 是一个基于图神经网络的开源项目,用于训练和预测紧束缚(TB)哈密顿量。该项目专门设计为 E(3) 对称性保持的图神经网络,能够用于分子和固体的电子结构计算。HamGNN 可以与常见的基于数值原子轨道的从头算 DFT 软件配合使用,如 OpenMX、Siesta 和 ABACUS。此外,它还支持包含自旋-轨道耦合效应的 SU(2) 对称性保持的哈密顿量预测。HamGNN 提供了对 DFT 结果的高保真近似,并且可以在材料结构之间提供迁移性预测,非常适合用于高通量电子结构计算,加速大规模系统的计算。
该项目主要使用 Python 编程语言。
项目使用的关键技术和框架
HamGNN 使用以下关键技术和框架:
- PyTorch:用于构建和训练神经网络。
- PyTorch Geometric:用于图神经网络相关的操作。
- e3nn:用于实现 E(3) 对称性保持的图神经网络。
- PyTorch Lightning:用于简化 PyTorch 的模型训练过程。
- tensorboard:用于可视化训练过程。
项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖:
- Python 3.9
- Conda 或其他 Python 环境管理工具
安装步骤
-
创建虚拟环境
使用 conda 创建一个新的虚拟环境(推荐):
conda create -f environment.yaml或者,如果您更喜欢使用预构建的 Conda 环境,可以从 Zenodo 下载并解压。
-
安装依赖库
激活虚拟环境后,安装所需的 Python 库:
conda activate hamgnn_env pip install numpy==1.21.2 PyTorch==1.11.0 PyTorch Geometric==2.0.4 pytorch_lightning==1.5.10 e3nn==0.5.0 pymatgen==2022.3.7 tensorboard==2.8.0 tqdm scipy==1.7.3 yaml -
安装 OpenMX
HamGNN 需要使用 OpenMX 生成的紧束缚哈密顿量。您可以从 OpenMX 的官方网站下载并安装。
-
安装 openmx_postprocess
下载 openmx_postprocess 并按照以下步骤安装:
git clone https://github.com/QuantumLab-ZY/openmx_postprocess.git cd openmx_postprocess # 修改 makefile 中的路径设置 make -
安装 HamGNN
克隆 HamGNN 仓库并安装:
git clone https://github.com/QuantumLab-ZY/HamGNN.git cd HamGNN python setup.py install -
配置文件
根据您的需求配置
config.yaml文件,设置网络和训练参数。 -
准备数据
准备训练和评估所需的结构文件,并使用
poscar2openmx转换为 OpenMX 格式。然后使用 OpenMX 进行静态计算,并使用openmx_postprocess处理结果。 -
训练模型
运行以下命令开始训练模型:
HamGNN2.0/HamGNN1.0 --config config.yaml -
监控训练
使用 TensorBoard 可视化训练进度:
tensorboard --logdir train_dir其中
train_dir是 HamGNN 保存训练日志的目录。 -
预测
训练完成后,您可以使用训练好的模型进行预测。确保将
config.yaml中的checkpoint_path设置为训练模型的路径,并将stage设置为test。然后运行:HamGNN2.0 --config config.yaml
遵循以上步骤,您应该能够成功安装和配置 HamGNN。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00