HamGNN 的安装和配置教程
项目的基础介绍和主要的编程语言
HamGNN 是一个基于图神经网络的开源项目,用于训练和预测紧束缚(TB)哈密顿量。该项目专门设计为 E(3) 对称性保持的图神经网络,能够用于分子和固体的电子结构计算。HamGNN 可以与常见的基于数值原子轨道的从头算 DFT 软件配合使用,如 OpenMX、Siesta 和 ABACUS。此外,它还支持包含自旋-轨道耦合效应的 SU(2) 对称性保持的哈密顿量预测。HamGNN 提供了对 DFT 结果的高保真近似,并且可以在材料结构之间提供迁移性预测,非常适合用于高通量电子结构计算,加速大规模系统的计算。
该项目主要使用 Python 编程语言。
项目使用的关键技术和框架
HamGNN 使用以下关键技术和框架:
- PyTorch:用于构建和训练神经网络。
- PyTorch Geometric:用于图神经网络相关的操作。
- e3nn:用于实现 E(3) 对称性保持的图神经网络。
- PyTorch Lightning:用于简化 PyTorch 的模型训练过程。
- tensorboard:用于可视化训练过程。
项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖:
- Python 3.9
- Conda 或其他 Python 环境管理工具
安装步骤
-
创建虚拟环境
使用 conda 创建一个新的虚拟环境(推荐):
conda create -f environment.yaml或者,如果您更喜欢使用预构建的 Conda 环境,可以从 Zenodo 下载并解压。
-
安装依赖库
激活虚拟环境后,安装所需的 Python 库:
conda activate hamgnn_env pip install numpy==1.21.2 PyTorch==1.11.0 PyTorch Geometric==2.0.4 pytorch_lightning==1.5.10 e3nn==0.5.0 pymatgen==2022.3.7 tensorboard==2.8.0 tqdm scipy==1.7.3 yaml -
安装 OpenMX
HamGNN 需要使用 OpenMX 生成的紧束缚哈密顿量。您可以从 OpenMX 的官方网站下载并安装。
-
安装 openmx_postprocess
下载 openmx_postprocess 并按照以下步骤安装:
git clone https://github.com/QuantumLab-ZY/openmx_postprocess.git cd openmx_postprocess # 修改 makefile 中的路径设置 make -
安装 HamGNN
克隆 HamGNN 仓库并安装:
git clone https://github.com/QuantumLab-ZY/HamGNN.git cd HamGNN python setup.py install -
配置文件
根据您的需求配置
config.yaml文件,设置网络和训练参数。 -
准备数据
准备训练和评估所需的结构文件,并使用
poscar2openmx转换为 OpenMX 格式。然后使用 OpenMX 进行静态计算,并使用openmx_postprocess处理结果。 -
训练模型
运行以下命令开始训练模型:
HamGNN2.0/HamGNN1.0 --config config.yaml -
监控训练
使用 TensorBoard 可视化训练进度:
tensorboard --logdir train_dir其中
train_dir是 HamGNN 保存训练日志的目录。 -
预测
训练完成后,您可以使用训练好的模型进行预测。确保将
config.yaml中的checkpoint_path设置为训练模型的路径,并将stage设置为test。然后运行:HamGNN2.0 --config config.yaml
遵循以上步骤,您应该能够成功安装和配置 HamGNN。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00