ROCm项目中的GPU监控查询问题分析与解决方案
问题背景
在AMD的ROCm 6.2.2版本环境中,用户报告了一个关于GPU监控功能异常的问题。具体表现为rocm-smi工具无法正常查询特定GPU的温度和功耗数据,系统日志中同时出现了大量与SMU(系统管理单元)通信相关的错误信息。这个问题在MI300系列GPU上较为常见,且通常需要通过重启节点才能暂时解决。
问题现象
当问题发生时,用户执行rocm-smi命令会看到如下异常输出:
Expected integer value from monitor, but got ""
同时,系统内核日志中会记录大量类似以下的错误信息:
amdgpu: failed to read reg:1629a
amdgpu: Failed to export SMU metrics table!
amdgpu: failed to write reg:2022
amdgpu: SMU: response:0xFFFFFFFF for index:9 param:0x00000000 message:GetMetricsTable?
技术分析
根本原因
这个问题主要源于GPU的系统管理单元(SMU)与驱动程序之间的通信异常。SMU负责管理GPU的功耗、温度等关键参数,当通信链路出现问题时,会导致监控数据无法正常获取。
从技术角度看,这可能是由以下几个因素导致的:
-
PMFW(电源管理固件)状态异常:PMFW可能进入了死锁状态,无法响应驱动程序的查询请求。
-
寄存器访问失败:驱动程序尝试读取或写入关键控制寄存器时失败,这可能是由于硬件连接问题或固件异常导致。
-
SMU指标表导出失败:系统无法获取包含温度、功耗等信息的指标表,这表明PMFW与驱动之间的数据交换通道出现了问题。
影响评估
虽然监控数据查询失败本身不会直接影响GPU的计算功能,但会带来以下潜在风险:
-
无法实时监控:系统管理员无法获取GPU的温度和功耗数据,难以及时发现过热或功耗异常情况。
-
动态调频受限:如果PMFW处于异常状态,GPU可能无法根据工作负载动态调整时钟频率,影响能效表现。
-
系统稳定性风险:长期运行在这种状态下可能导致更严重的硬件问题。
解决方案
临时解决方案
-
节点重启:可以暂时恢复监控功能,但问题可能会再次出现。
-
GPU重新插拔:如果是特定GPU卡的问题,尝试重新插拔并检查连接线是否牢固。
长期解决方案
-
更新ROCm和amdgpu驱动:
- 完全卸载现有ROCm和amdgpu驱动
- 使用最新版本的安装包重新安装
- 安装时指定正确的用例参数:
sudo amdgpu-install --usecase=rocm,dkms
-
硬件检查:
- 将问题GPU卡更换到其他PCIe插槽测试
- 如果问题跟随特定GPU卡出现,可能需要考虑硬件更换
-
固件更新:
- 检查是否有可用的GPU固件更新
- 更新相关固件可能解决已知的通信问题
预防措施
-
定期系统维护:包括驱动更新和硬件检查。
-
监控系统日志:设置告警规则,及时发现SMU通信异常。
-
环境检查:确保GPU散热良好,供电稳定。
总结
ROCm环境中GPU监控功能异常是一个需要重视的问题,虽然不影响基本计算功能,但会削弱系统监控能力。通过驱动更新、硬件检查和固件升级等综合手段,可以有效解决或缓解这一问题。对于频繁出现此问题的环境,建议联系AMD技术支持进行更深入的诊断。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00