Yolo Tracking 项目在 Raspberry Pi 上的安装与运行问题分析
2025-05-30 07:27:23作者:晏闻田Solitary
在嵌入式设备上部署计算机视觉项目时,经常会遇到各种环境配置问题。本文将以 Yolo Tracking 项目在 Raspberry Pi 4B 上的安装运行为例,深入分析可能遇到的问题及其解决方案。
环境配置的核心挑战
Raspberry Pi 4B 作为一款基于 ARM 架构的嵌入式设备,与传统的 x86 架构 PC 在软件生态上存在显著差异。当尝试运行 Yolo Tracking 这样的深度学习项目时,主要面临以下挑战:
- 硬件架构差异:ARM64 架构需要特定的软件包版本
- 计算资源限制:1GB 内存对深度学习模型较为紧张
- 依赖库兼容性:PyTorch 等框架的 ARM 版本支持有限
典型错误分析
在安装过程中,用户遇到了 ModuleNotFoundError: No module named 'tracking' 错误。这通常表明 Python 解释器无法找到项目中的 tracking 模块,主要原因包括:
- 项目目录结构未被正确识别
- 虚拟环境未正确激活
- 安装方式选择不当
正确的安装流程
针对 Raspberry Pi 设备,推荐以下安装步骤:
-
创建专用虚拟环境
python -m venv yolo_env source yolo_env/bin/activate -
安装系统依赖
sudo apt-get install libopenblas-dev libblas-dev m4 cmake cython -
安装 PyTorch 的 ARM 兼容版本
pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/raspbian-buster -
克隆并安装项目
git clone https://github.com/mikel-brostrom/boxmot.git cd boxmot pip install -e .
常见问题解决方案
PyTorch 安装失败
在 ARM 设备上直接安装 PyTorch 的标准版本通常会失败。解决方案包括:
- 使用 PyTorch 官方提供的 ARM 兼容版本
- 考虑使用更轻量级的替代框架如 ONNX Runtime
- 从源码编译 PyTorch(耗时较长)
内存不足问题
对于仅有 1GB 内存的 Raspberry Pi,可以采取以下优化措施:
- 使用 YOLO 的 Tiny 版本模型
- 降低输入图像分辨率
- 启用交换空间(swap)扩展虚拟内存
性能优化建议
在资源受限的设备上运行目标跟踪算法时,建议:
- 使用多进程而非多线程
- 合理设置检测间隔(skip frames)
- 关闭不必要的可视化输出
- 考虑使用量化后的模型
通过以上分析和解决方案,开发者可以更顺利地在 Raspberry Pi 等嵌入式设备上部署 Yolo Tracking 项目,实现高效的目标跟踪功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355