Apache Phoenix 使用教程
2024-09-02 16:24:21作者:韦蓉瑛
项目介绍
Apache Phoenix 是一个开源的、高性能的关系型数据库引擎,它构建在 Apache HBase 之上。Phoenix 允许用户使用标准的 SQL 和 JDBC API 来查询和管理 HBase 数据。它通过将 SQL 查询编译成一系列的 HBase 扫描,并行执行它们,从而实现了低延迟的数据访问。
项目快速启动
环境准备
- Java 8 或更高版本
- HBase 1.x 或 2.x
- Maven
下载与安装
-
克隆项目仓库:
git clone https://github.com/apache/phoenix.git -
编译项目:
cd phoenix mvn clean install -DskipTests -
将编译后的 Phoenix 客户端 jar 文件添加到你的项目依赖中。
示例代码
以下是一个简单的示例,展示如何使用 Phoenix 创建表并插入数据:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.Statement;
public class PhoenixExample {
public static void main(String[] args) throws Exception {
Connection connection = DriverManager.getConnection("jdbc:phoenix:localhost");
Statement stmt = connection.createStatement();
// 创建表
stmt.executeUpdate("CREATE TABLE IF NOT EXISTS us_population ("
+ "state CHAR(2) NOT NULL, "
+ "city VARCHAR NOT NULL, "
+ "population BIGINT "
+ "CONSTRAINT my_pk PRIMARY KEY (state, city))");
// 插入数据
PreparedStatement pstmt = connection.prepareStatement(
"UPSERT INTO us_population VALUES (?, ?, ?)");
pstmt.setString(1, "NY");
pstmt.setString(2, "New York");
pstmt.setLong(3, 8622698);
pstmt.executeUpdate();
connection.commit();
connection.close();
}
}
应用案例和最佳实践
应用案例
Apache Phoenix 广泛应用于需要实时数据处理和分析的场景,例如:
- 金融交易监控
- 物联网数据分析
- 在线广告点击流分析
最佳实践
- 索引优化:合理使用覆盖索引和本地索引,以提高查询性能。
- 数据模型设计:根据业务需求设计合适的数据模型,避免频繁的表结构变更。
- 查询优化:编写高效的 SQL 查询,避免全表扫描。
典型生态项目
Apache Phoenix 通常与其他 Apache 项目结合使用,构建完整的数据处理和分析平台:
- Apache HBase:作为底层存储引擎。
- Apache Kafka:用于实时数据流处理。
- Apache Spark:用于大规模数据处理和分析。
- Apache Zeppelin:用于交互式数据分析和可视化。
通过这些项目的组合,可以构建一个强大的大数据处理和分析系统,满足各种实时和批量数据处理需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1