Apache Phoenix 使用教程
2024-09-02 22:36:55作者:韦蓉瑛
项目介绍
Apache Phoenix 是一个开源的、高性能的关系型数据库引擎,它构建在 Apache HBase 之上。Phoenix 允许用户使用标准的 SQL 和 JDBC API 来查询和管理 HBase 数据。它通过将 SQL 查询编译成一系列的 HBase 扫描,并行执行它们,从而实现了低延迟的数据访问。
项目快速启动
环境准备
- Java 8 或更高版本
- HBase 1.x 或 2.x
- Maven
下载与安装
-
克隆项目仓库:
git clone https://github.com/apache/phoenix.git -
编译项目:
cd phoenix mvn clean install -DskipTests -
将编译后的 Phoenix 客户端 jar 文件添加到你的项目依赖中。
示例代码
以下是一个简单的示例,展示如何使用 Phoenix 创建表并插入数据:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.Statement;
public class PhoenixExample {
public static void main(String[] args) throws Exception {
Connection connection = DriverManager.getConnection("jdbc:phoenix:localhost");
Statement stmt = connection.createStatement();
// 创建表
stmt.executeUpdate("CREATE TABLE IF NOT EXISTS us_population ("
+ "state CHAR(2) NOT NULL, "
+ "city VARCHAR NOT NULL, "
+ "population BIGINT "
+ "CONSTRAINT my_pk PRIMARY KEY (state, city))");
// 插入数据
PreparedStatement pstmt = connection.prepareStatement(
"UPSERT INTO us_population VALUES (?, ?, ?)");
pstmt.setString(1, "NY");
pstmt.setString(2, "New York");
pstmt.setLong(3, 8622698);
pstmt.executeUpdate();
connection.commit();
connection.close();
}
}
应用案例和最佳实践
应用案例
Apache Phoenix 广泛应用于需要实时数据处理和分析的场景,例如:
- 金融交易监控
- 物联网数据分析
- 在线广告点击流分析
最佳实践
- 索引优化:合理使用覆盖索引和本地索引,以提高查询性能。
- 数据模型设计:根据业务需求设计合适的数据模型,避免频繁的表结构变更。
- 查询优化:编写高效的 SQL 查询,避免全表扫描。
典型生态项目
Apache Phoenix 通常与其他 Apache 项目结合使用,构建完整的数据处理和分析平台:
- Apache HBase:作为底层存储引擎。
- Apache Kafka:用于实时数据流处理。
- Apache Spark:用于大规模数据处理和分析。
- Apache Zeppelin:用于交互式数据分析和可视化。
通过这些项目的组合,可以构建一个强大的大数据处理和分析系统,满足各种实时和批量数据处理需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355