Apache Phoenix 使用教程
2024-09-02 04:37:35作者:韦蓉瑛
项目介绍
Apache Phoenix 是一个开源的、高性能的关系型数据库引擎,它构建在 Apache HBase 之上。Phoenix 允许用户使用标准的 SQL 和 JDBC API 来查询和管理 HBase 数据。它通过将 SQL 查询编译成一系列的 HBase 扫描,并行执行它们,从而实现了低延迟的数据访问。
项目快速启动
环境准备
- Java 8 或更高版本
- HBase 1.x 或 2.x
- Maven
下载与安装
-
克隆项目仓库:
git clone https://github.com/apache/phoenix.git
-
编译项目:
cd phoenix mvn clean install -DskipTests
-
将编译后的 Phoenix 客户端 jar 文件添加到你的项目依赖中。
示例代码
以下是一个简单的示例,展示如何使用 Phoenix 创建表并插入数据:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.Statement;
public class PhoenixExample {
public static void main(String[] args) throws Exception {
Connection connection = DriverManager.getConnection("jdbc:phoenix:localhost");
Statement stmt = connection.createStatement();
// 创建表
stmt.executeUpdate("CREATE TABLE IF NOT EXISTS us_population ("
+ "state CHAR(2) NOT NULL, "
+ "city VARCHAR NOT NULL, "
+ "population BIGINT "
+ "CONSTRAINT my_pk PRIMARY KEY (state, city))");
// 插入数据
PreparedStatement pstmt = connection.prepareStatement(
"UPSERT INTO us_population VALUES (?, ?, ?)");
pstmt.setString(1, "NY");
pstmt.setString(2, "New York");
pstmt.setLong(3, 8622698);
pstmt.executeUpdate();
connection.commit();
connection.close();
}
}
应用案例和最佳实践
应用案例
Apache Phoenix 广泛应用于需要实时数据处理和分析的场景,例如:
- 金融交易监控
- 物联网数据分析
- 在线广告点击流分析
最佳实践
- 索引优化:合理使用覆盖索引和本地索引,以提高查询性能。
- 数据模型设计:根据业务需求设计合适的数据模型,避免频繁的表结构变更。
- 查询优化:编写高效的 SQL 查询,避免全表扫描。
典型生态项目
Apache Phoenix 通常与其他 Apache 项目结合使用,构建完整的数据处理和分析平台:
- Apache HBase:作为底层存储引擎。
- Apache Kafka:用于实时数据流处理。
- Apache Spark:用于大规模数据处理和分析。
- Apache Zeppelin:用于交互式数据分析和可视化。
通过这些项目的组合,可以构建一个强大的大数据处理和分析系统,满足各种实时和批量数据处理需求。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133