Redisson项目中Redis搜索索引信息解析异常问题分析
在Redisson 3.31.0版本与Redis 7.2.4配合使用时,开发团队发现了一个关于搜索索引信息解析的异常问题。这个问题主要出现在处理Redis搜索模块返回的索引统计信息时,特别是当解析offset_bits_per_record_avg字段值时。
问题背景
Redis搜索模块提供了FT.INFO命令来获取索引的详细信息,这些信息包含了各种性能指标和统计数值。Redisson客户端通过IndexInfoDecoder类来解析这些返回的数据。在Redis 7.2.4版本中,某些指标如offset_bits_per_record_avg返回的是浮点数值(例如"15.182429313659668"),而Redisson的解析代码尝试将其转换为长整型(Long),导致了NumberFormatException异常。
技术细节
问题的核心在于数据类型的不匹配。Redis搜索模块返回的部分指标值实际上是浮点数,但Redisson的IndexInfoDecoder类中使用了toLong方法进行强制转换。这种设计在早期版本中可能没有问题,但随着Redis搜索模块的演进,某些指标开始返回更精确的浮点数值。
从返回的FT.INFO结果可以看到,除了offset_bits_per_record_avg外,还有其他多个字段也返回浮点数值,例如:
- inverted_sz_mb: "0.06223869323730469"
- vector_index_sz_mb: "2.2241592407226563"
- records_per_doc_avg: "1323.4285888671875"
影响范围
这个问题会影响所有使用Redisson 3.31.0客户端与Redis 7.2.4及以上版本搜索功能的应用程序,特别是那些依赖FT.INFO命令获取索引统计信息的场景。当尝试获取索引信息时,应用程序会抛出DecoderException,导致功能不可用。
解决方案
Redisson开发团队已经修复了这个问题,主要修改包括:
- 将相关字段的解析从长整型改为双精度浮点型
- 确保所有可能返回浮点数值的字段都能被正确解析
- 保持向后兼容性,不影响现有合法整数值的解析
修复后的版本能够正确处理Redis返回的各种数值格式,无论是整数还是浮点数,从而提供更稳定的索引信息查询功能。
最佳实践
对于使用Redisson与Redis搜索功能的开发者,建议:
- 及时升级到包含此修复的Redisson版本
- 在代码中处理索引信息时,注意相关字段可能是浮点数而非整数
- 对于关键业务场景,考虑添加异常处理逻辑以增强鲁棒性
- 定期检查Redis搜索模块的更新日志,了解可能的返回格式变化
这个问题很好地展示了在分布式系统开发中,客户端与服务端版本兼容性的重要性,也提醒开发者在处理外部系统返回数据时要考虑各种可能的格式变化。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00