X-AnyLabeling中解决YOLOv11分割模型预测维度错误问题
2025-06-07 10:14:29作者:韦蓉瑛
问题背景
在使用X-AnyLabeling工具集成YOLOv11分割模型时,用户遇到了"Error in model prediction: negative dimensions are not allowed"的错误提示。这个问题通常出现在模型配置与模型实际结构不匹配的情况下,特别是在处理自定义分割任务时。
错误原因分析
通过对模型输入输出节点的检查,我们发现YOLOv11分割模型的输出结构具有特定格式:
- 输入节点:名称为"images",形状为[1, 3, 640, 640]
- 输出节点1:"output0",形状为[1, 116, 8400]
- 输出节点2:"output1",形状为[1, 32, 160, 160]
这种输出结构是YOLO系列分割模型的典型特征。其中,116这个维度包含了边界框坐标(4)、类别分数(80)和掩码系数(32)三部分信息。这意味着该模型原始设计用于80类别的分割任务。
常见配置错误
用户尝试将模型用于6个自定义类别时出现错误,主要原因包括:
- 类别数量不匹配:模型期望80类,而配置中只定义了6类
- 输出维度解析错误:未能正确处理116维度的分解方式
- 掩码系数理解偏差:错误认为可以调整掩码系数数量来匹配类别数
解决方案
正确配置模型参数
在X-AnyLabeling的YAML配置文件中,必须准确反映模型的实际结构:
type: yolo11_seg
name: custom_seg_model
model_path: /path/to/model.onnx
input_width: 640
input_height: 640
classes:
- class1
- class2
# ...完整列出80个类别...
filter_classes:
- lesion
- pleurisy
- cicatrix
- other
- healthy
- background
关键配置要点
- 完整类别列表:classes字段必须包含模型训练时的全部80个类别,顺序必须与训练时一致
- 类别过滤机制:使用filter_classes字段指定实际需要使用的子集类别
- 维度一致性:不能修改模型的输出维度结构,必须按其原始设计使用
模型适配建议
对于需要使用自定义类别的情况,建议采取以下方法:
- 模型微调:在原始模型基础上,使用包含目标类别的数据集进行微调训练
- 类别映射:将模型的某些输出类别映射到实际需要的类别
- 多模型集成:对于复杂需求,可考虑使用多个专用模型组合
实践注意事项
- 使用Netron等工具仔细检查模型结构后再进行配置
- 确保输入图像尺寸与模型期望尺寸一致
- 验证模型输出与配置的对应关系
- 对于分割任务,特别注意掩码系数的处理方式
总结
在X-AnyLabeling中集成自定义YOLOv11分割模型时,正确处理模型输出维度与配置文件的对应关系至关重要。通过理解模型结构、正确配置类别列表和合理使用过滤机制,可以有效地解决"negative dimensions"错误,实现精准的图像分割标注。对于特殊需求,建议通过模型微调而非强制修改配置来达成目标,确保预测结果的准确性和稳定性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5