TensorFieldNetworks中的旋转等变网络层解析
2025-07-10 14:38:42作者:晏闻田Solitary
TensorFieldNetworks是一个实现3D旋转等变神经网络的项目,其中的layers.py文件定义了核心的网络层结构。本文将深入解析这些层的实现原理和工作机制,帮助读者理解如何构建旋转等变的神经网络。
1. 径向函数基础层(R)
径向函数R是构建旋转等变网络的基础组件,它是一个简单的两层全连接网络:
def R(inputs, nonlin=tf.nn.relu, hidden_dim=None, output_dim=1,
weights_initializer=None, biases_initializer=None):
# 实现细节...
- 输入:任意维度的张量,最后一维为特征维度
- 输出:经过非线性变换后的径向函数值
- 特点:使用Xavier初始化权重,偏置初始化为0
- 应用:作为其他高阶层的基础构建块
2. 球谐函数相关层
2.1 单位向量计算(unit_vectors)
def unit_vectors(v, axis=-1):
return v / utils.norm_with_epsilon(v, axis=axis, keep_dims=True)
这个函数计算输入向量的单位向量,防止除以零的情况出现。
2.2 二阶球谐函数(Y_2)
def Y_2(rij):
# 实现细节...
- 输入:相对位置向量rij [N, N, 3]
- 输出:二阶球谐函数值 [N, N, 5]
- 作用:用于构建二阶张量场
3. 张量场构建层
项目实现了三种不同阶数的张量场构建函数:
3.1 零阶张量场(F_0)
def F_0(inputs, nonlin=tf.nn.relu, hidden_dim=None, output_dim=1,
weights_initializer=None, biases_initializer=None):
# 实现细节...
- 输出形状:[N, N, output_dim, 1]
- 特点:标量场,旋转不变
3.2 一阶张量场(F_1)
def F_1(inputs, rij, nonlin=tf.nn.relu, hidden_dim=None, output_dim=1,
weights_initializer=None, biases_initializer=None):
# 实现细节...
- 输出形状:[N, N, output_dim, 3]
- 特点:向量场,旋转协变
- 特殊处理:对零距离进行掩码处理
3.3 二阶张量场(F_2)
def F_2(inputs, rij, nonlin=tf.nn.relu, hidden_dim=None, output_dim=1,
weights_initializer=None, biases_initializer=None):
# 实现细节...
- 输出形状:[N, N, output_dim, 5]
- 特点:二阶张量场,使用Y_2函数实现旋转协变
4. 滤波器层
项目实现了多种滤波器,用于不同阶数张量场之间的转换:
4.1 零阶滤波器(filter_0)
def filter_0(layer_input, rbf_inputs, nonlin=tf.nn.relu, hidden_dim=None,
output_dim=1, weights_initializer=None, biases_initializer=None):
# 实现细节...
- 功能:实现L×0→L的滤波操作
- 使用场景:保持张量场阶数不变的操作
4.2 一阶到零阶滤波器(filter_1_output_0)
def filter_1_output_0(layer_input, rbf_inputs, rij, nonlin=tf.nn.relu,
hidden_dim=None, output_dim=1, weights_initializer=None,
biases_initializer=None):
# 实现细节...
- 功能:实现1×1→0的滤波操作
- 数学基础:使用点积实现向量到标量的降阶
4.3 一阶到一阶滤波器(filter_1_output_1)
def filter_1_output_1(layer_input, rbf_inputs, rij, nonlin=tf.nn.relu,
hidden_dim=None, output_dim=1, weights_initializer=None,
biases_initializer=None):
# 实现细节...
- 功能:实现0×1→1和1×1→1的滤波操作
- 数学基础:使用叉积保持向量性质
4.4 二阶滤波器(filter_2_output_2)
def filter_2_output_2(layer_input, rbf_inputs, rij, nonlin=tf.nn.relu,
hidden_dim=None, output_dim=1, weights_initializer=None,
biases_initializer=None):
# 实现细节...
- 功能:实现0×2→2的滤波操作
- 数学基础:使用二阶球谐函数保持张量性质
5. 自交互层
自交互层实现了通道间的信息混合:
def self_interaction_layer_without_biases(inputs, output_dim,
weights_initializer=None,
biases_initializer=None):
# 实现细节...
def self_interaction_layer_with_biases(inputs, output_dim,
weights_initializer=None,
biases_initializer=None):
# 实现细节...
- 区别:是否包含偏置项
- 特点:使用正交初始化权重
- 应用:用于构建更深的网络结构
6. 高级组合层
项目还提供了几种高级组合层,简化网络构建:
6.1 卷积组合层(convolution)
def convolution(input_tensor_list, rbf, unit_vectors,
weights_initializer=None, biases_initializer=None):
# 实现细节...
- 功能:自动处理不同阶数张量场的卷积组合
- 输出:按阶数分类的张量场列表
6.2 自交互组合层(self_interaction)
def self_interaction(input_tensor_list, output_dim,
weights_initializer=None, biases_initializer=None):
# 实现细节...
- 功能:批量处理自交互操作
- 特点:对零阶和一阶张量场采用不同处理方式
6.3 非线性组合层(nonlinearity)
def nonlinearity(input_tensor_list, nonlin=tf.nn.elu,
biases_initializer=None):
# 实现细节...
- 功能:应用旋转等变的非线性激活
- 默认使用ELU激活函数
6.4 张量连接层(concatenation)
def concatenation(input_tensor_list):
# 实现细节...
- 功能:沿通道维度连接同阶张量场
- 输出:简化后的张量场列表
7. 设计思想与技术要点
- 旋转等变性:所有层设计都保证输入输出在3D旋转下的正确变换性质
- 张量场处理:明确区分不同阶数的张量场(标量、向量、二阶张量)
- Clebsch-Gordan系数:隐含在各种滤波器实现中,确保角动量耦合的正确性
- 数值稳定性:通过EPSILON等机制保证数值计算的稳定性
8. 应用建议
在实际使用这些层构建网络时,建议:
- 从简单结构开始,逐步增加复杂度
- 注意各层输入输出张量的阶数匹配
- 合理使用组合层简化网络构建
- 根据任务需求选择合适的非线性激活函数
- 注意初始化方式对训练稳定性的影响
通过理解这些层的实现原理和设计思想,开发者可以更有效地构建满足3D旋转等变要求的神经网络模型,应用于分子性质预测、点云处理等需要3D几何不变性的领域。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219