Tenstorrent Metal v0.59.0-rc8 版本技术解析
Tenstorrent Metal 是一个面向高性能计算的硬件加速框架,专注于为AI和机器学习工作负载提供高效的硬件加速解决方案。最新发布的v0.59.0-rc8版本带来了多项重要改进和功能增强,本文将深入解析这些技术更新。
核心架构优化
本次版本在底层架构方面进行了多项重要改进。首先是对设备初始化的重构,将固件构建和内存清除操作从设备初始化阶段移至MetalContext初始化阶段,这一改变优化了设备启动流程,提高了系统初始化效率。
在内存管理方面,移除了主机端缓冲区分配/释放的概念,简化了内存管理模型。同时改进了分布式主机缓冲区(DistributeHostBuffer)的实现,以更好地支持TTNN集成。这些改动使得内存访问模式更加高效,减少了不必要的内存操作开销。
计算性能提升
新版本对多个计算核心进行了优化。在矩阵乘法(matmul)方面,调整了批大小计算方法并改进了相关测试;在卷积运算中,处理了当split_reader启用且act_block_h=1时的边缘情况;在TopK操作中,扩展了对子核心网格的支持,并充分利用列中的可用核心。
特别值得注意的是对除法和模运算的改进:修改了除法测试范围并清理了相关代码,同时修正了浮点模运算(FMOD)的文档说明。这些基础运算的优化为上层应用提供了更稳定可靠的数学基础。
通信与互联增强
在设备间通信方面,v0.59.0-rc8引入了多项重要改进。新增了对4x2网格分割为两个2x2网格的支持,并提供了相应的网格描述符和测试。优化了网格间路由算法,使其能够更高效地路由到下一个网格。
特别值得关注的是新增的"One to All"和"One to All Multicast"通信原语,这些集体通信操作的加入大大简化了多设备间的数据分发模式。同时修复了Blackhole设备上的以太网微基准测试挂起问题,提高了通信可靠性。
新模型支持与演示
本次版本加强了对多种AI模型的支持。在计算机视觉方面,改进了Yolov8x和Yolov9c模型的演示实现;在自然语言处理领域,为Llama和Mistral模型增加了多项优化,包括对Llama-3.1-8B-Instruct模型的精度调整。
特别引入了3层架构的训练演示,展示了框架在分布式训练场景下的能力。同时改进了VAE解码器在Stable Diffusion v1-4演示中的集成,为生成式AI应用提供了更完整的支持。
开发者体验改进
在开发者工具方面,新版本增加了对TT-MLIR C++代码生成emitc的测试基础设施,为编译器开发者提供了更好的工具支持。同时改进了跟踪缓冲区大小,增强了调试能力。
在API设计上,清理了Tensor的各种属性获取接口,使API更加一致和易用。移除了特定于实现的头文件暴露,如dev_msgs.h,提高了API的封装性。这些改进使得开发者能够更高效地使用框架功能。
稳定性与可靠性增强
v0.59.0-rc8版本包含了多项稳定性修复。修正了未初始化变量的使用问题,处理了各种边界条件,如Untilize操作中当每核心输出通道大于256时的情况。同时改进了断言处理,确保在调试构建中能够正确捕获问题。
在测试覆盖方面,新增了多设备元素操作和张量管理压力测试,以及连接打开/关闭的压力测试,这些新增测试有助于提前发现潜在问题,提高系统整体稳定性。
总结
Tenstorrent Metal v0.59.0-rc8版本在计算性能、通信效率、模型支持和开发者体验等方面都取得了显著进步。这些改进不仅提升了框架的基础能力,也为更复杂AI应用的部署铺平了道路。特别是对大规模模型训练和推理的支持增强,使得该框架在AI加速领域的竞争力进一步提升。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00