NVIDIA k8s-device-plugin 在Ubuntu 20.04中的GPU资源调度问题解析
2025-06-25 23:01:56作者:韦蓉瑛
问题背景
在使用NVIDIA k8s-device-plugin部署Kubernetes集群时,用户遇到了GPU资源调度的问题。具体表现为在Ubuntu 20.04系统中,虽然主机已安装NVIDIA 545驱动和CUDA 12.3,但容器内仍提示CUDA驱动版本不兼容的错误。
环境配置分析
用户的环境配置如下:
- 操作系统:Ubuntu 20.04 LTS
- GPU型号:NVIDIA RTX 3070 Ti
- 驱动程序版本:545
- CUDA版本:12.3
- 容器运行时:Docker(默认配置为nvidia运行时)
问题排查过程
初始错误现象
当用户尝试部署包含GPU资源的Pod时,容器启动失败并报错,提示CUDA驱动版本与运行时版本不匹配。错误信息表明容器内检测到的CUDA运行时版本为1.14.4,而主机安装的是CUDA 12.3。
配置调整尝试
用户首先尝试修改/etc/nvidia-container-runtime/config.toml文件,添加了disable-require = true配置项,期望绕过版本检查,但问题依旧存在。
深入诊断
通过执行nvidia-smi命令在容器内验证GPU访问能力,发现虽然Docker直接运行时可以正常访问GPU,但在Kubernetes环境下却无法正常工作。这表明问题可能出在Kubernetes与容器运行时的集成层面。
根本原因
经过深入分析,发现问题根源在于Kubernetes集群使用了containerd作为容器运行时,而NVIDIA容器运行时并未正确配置在containerd中。虽然Docker本身配置了nvidia作为默认运行时,但Kubernetes并未通过Docker而是直接使用了containerd来管理容器。
解决方案
有两种可行的解决方案:
方案一:配置containerd使用NVIDIA运行时
- 执行配置命令:
sudo nvidia-ctk runtime configure --runtime=containerd --set-as-default
sudo systemctl restart containerd
- 重启NVIDIA设备插件
方案二:改用cri-dockerd作为容器运行时
用户最终选择了此方案,步骤如下:
- 安装cri-dockerd
- 重新配置Kubernetes使用cri-dockerd作为容器运行时
- 重启Kubernetes组件
经验总结
- Kubernetes环境下GPU资源调度需要特别注意容器运行时的配置
- 即使Docker配置了nvidia运行时,Kubernetes也可能使用其他运行时(如containerd)
- 在containerd环境下,必须显式配置NVIDIA容器运行时
- 使用
nvidia-smi命令是验证GPU访问能力的有效手段 - 设备插件的日志对于诊断问题非常重要
最佳实践建议
- 在部署Kubernetes GPU集群前,明确规划好容器运行时的选择
- 对于生产环境,建议使用containerd并正确配置NVIDIA运行时
- 开发环境可以考虑使用cri-dockerd简化配置
- 定期检查设备插件日志,确保GPU资源被正确识别和上报
- 使用
nvidia-ctk工具验证运行时配置是否正确
通过以上分析和解决方案,用户成功解决了GPU资源在Kubernetes集群中的调度问题,为后续的AI/ML工作负载提供了可靠的GPU计算能力支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355