解决Boltz项目安装过程中scipy依赖OpenBLAS报错问题
问题背景
在安装Boltz项目时,用户遇到了一个常见的Python包依赖问题。具体表现为在安装过程中,scipy包的构建失败,错误信息显示无法找到OpenBLAS依赖。这是一个典型的科学计算Python包安装问题,涉及到底层数学库的依赖关系。
错误分析
从错误日志中可以看到,关键错误信息是:
ERROR: Dependency "OpenBLAS" not found, tried pkgconfig
这表明系统缺少OpenBLAS数学库,而scipy在构建时需要这个库。OpenBLAS是一个高性能的线性代数库,许多科学计算包都依赖它。在Linux系统上,这类底层依赖通常需要通过系统包管理器安装。
解决方案
经过多次尝试,最终找到了有效的解决方案。以下是完整的解决步骤:
-
创建新的conda环境:使用Python 3.9.7版本创建环境,避免使用过新或过旧的Python版本可能带来的兼容性问题。
conda create --name protein_boltz1 python=3.9.7 conda activate protein_boltz1 -
安装cmake:cmake是构建工具,许多科学计算包需要它。
conda install cmake -
设置环境变量:确保cmake能够被正确找到。
export CMAKE_PREFIX_PATH=/opt/.miniconda/envs/protein_boltz1/ -
单独安装scipy:先安装指定版本的scipy,解决其依赖问题。
conda install scipy==1.13.1 -
安装Boltz项目:最后安装Boltz项目。
pip install boltz -U
技术原理
这个问题的根本原因在于:
-
Python包依赖关系:Boltz项目依赖scipy,而scipy又依赖OpenBLAS这样的底层数学库。
-
构建工具链:现代Python科学计算包通常使用meson或cmake等构建系统,这些系统需要正确配置才能找到系统依赖。
-
环境隔离:使用conda环境可以更好地管理Python版本和依赖关系,避免系统Python环境被污染。
经验总结
-
Python版本选择:对于科学计算项目,Python 3.9.x通常是一个稳定且兼容性好的选择。
-
依赖管理:遇到构建问题时,可以尝试先单独安装有问题的依赖包。
-
构建工具:确保系统中有完整的构建工具链(如cmake、gcc等)。
-
环境变量:正确设置构建相关的环境变量有时能解决找不到依赖的问题。
通过这种方法,我们不仅解决了Boltz项目的安装问题,也为处理类似的科学计算Python包安装问题提供了参考方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00