Apollo Client 在 React Native 中使用 @defer 指令的实践指南
问题背景
在 React Native 应用中使用 Apollo Client 时,开发者在尝试使用 GraphQL 的 @defer 指令时遇到了问题。当通过 Redux action 调用 client.query() 方法时,系统返回了"Error: [TypeError: Cannot read property 'length' of undefined]"的错误信息。
核心问题分析
1. @defer 指令的特性
@defer 是 GraphQL 的一个实验性指令,它允许服务器将响应分成多个部分流式传输。第一个部分包含不需要延迟的字段,后续部分包含标记为 @defer 的字段。这种机制对于优化大型查询特别有用。
2. client.query 与 client.watchQuery 的区别
在 Apollo Client 中,client.query() 方法只会等待响应的第一部分完成,而不会处理后续的流式响应。这就是为什么 @defer 指令在使用 client.query() 时无法正常工作。
正确的做法是使用 client.watchQuery(),它会:
- 监听完整的响应流
- 处理所有部分的数据
- 包括 @defer 标记的延迟字段
3. 性能考量
值得注意的是,watchQuery 并不会给服务器带来额外的负担。从服务器角度看,query 和 watchQuery 是完全相同的请求。区别仅在于客户端如何处理响应。
持久化查询的哈希问题
在尝试解决 @defer 问题时,开发者还遇到了持久化查询(Persisted Queries)的哈希不匹配问题。这里有几个关键发现:
-
哈希生成方式:Apollo Client 会在发送查询前自动添加 __typename 字段,这会改变查询的结构,从而影响哈希值。
-
正确的哈希方法:应该直接对打印(print)后的查询字符串进行哈希,而不是先将其字符串化(stringify)。
-
哈希算法一致性:确保客户端和服务器使用相同的哈希算法和输入字符串格式。
最佳实践建议
-
避免将 Apollo 数据复制到 Redux:Apollo Client 本身就是一个功能完善的缓存系统,将相同数据复制到 Redux 中会造成冗余和维护负担。
-
合理使用 watchQuery:当需要处理流式响应或订阅更新时,watchQuery 是更好的选择。
-
哈希生成注意事项:
- 使用 Apollo Client 提供的 print 函数将查询转换为字符串
- 确保哈希算法在客户端和服务器端一致
- 不要对查询进行额外的字符串化处理
-
React Native 特殊配置:在 React Native 环境中,需要正确配置多部分HTTP响应的polyfill,以支持流式传输。
总结
在 React Native 中使用 Apollo Client 的高级功能如 @defer 指令时,理解底层机制至关重要。正确选择查询方法(client.query vs client.watchQuery)和正确处理持久化查询的哈希值是确保功能正常工作的关键。通过遵循这些最佳实践,开发者可以充分利用 GraphQL 的强大功能,同时避免常见的陷阱。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C069
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00