Swift项目中使用Flash Attention时遇到的Padding Side问题解析
问题背景
在Swift项目中进行多模态模型训练时,当启用Flash Attention优化(通过--attn_impl 'flash_attn'参数)后,模型训练过程可以正常进行,但在评估阶段会出现报错。错误信息明确指出:"You are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Qwen2_5_VL. Make sure to call tokenizer.padding_side = 'left' before tokenizing the input"。
技术原理分析
这个问题涉及到Transformer模型中的注意力机制实现细节:
-
Flash Attention优化:这是一种高效实现注意力机制的方法,通过减少内存访问次数来加速计算。但与标准注意力实现不同,它对输入序列的padding处理有特殊要求。
-
Padding处理:在批处理中,不同长度的序列会被padding到相同长度。传统实现通常使用右侧padding(padding_side='right'),但Flash Attention要求左侧padding。
-
评估阶段差异:训练阶段通常使用teacher forcing方式,而评估阶段可能涉及自回归生成,这时padding位置会影响注意力掩码的计算。
问题影响
该问题会导致:
- 评估阶段无法正常进行
- 可能影响模型性能评估
- 中断训练流程(如果设置了定期评估)
解决方案
对于使用Swift进行多模态模型训练的用户,可以采取以下解决方法:
- 修改tokenizer配置:
tokenizer.padding_side = 'left'
-
在训练脚本中设置: 对于Qwen2.5-VL或InternVL2.5等模型,可以在创建tokenizer后立即设置padding_side。
-
Swift框架层面: 等待Swift框架更新,内置对Flash Attention的完整支持。
最佳实践建议
- 在使用Flash Attention时,始终检查tokenizer的padding_side设置
- 对于多模态模型,特别注意视觉和文本tokenizer的一致性
- 在评估前验证输入数据的padding方式
总结
这个问题揭示了高效注意力实现与标准实现之间的细微差异。理解这些差异有助于开发者更好地利用Flash Attention等优化技术,同时保证模型训练和评估的正确性。随着Swift等框架的不断完善,这类问题有望得到更优雅的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00