Kubeflow/KFServing中KServe地址解析器角色绑定问题解析
在Kubeflow的KFServing项目(现为KServe)中,开发者发现了一个关于集群角色kserve-addressable-resolver的设计问题。该角色最初被标记为"孤儿资源",但实际上这是Knative服务集成中的一种特殊设计模式。
KServe作为Kubernetes上的机器学习服务框架,深度集成了Knative服务组件。在Knative的架构设计中,地址解析器(Addressable Resolver)机制是一个关键组件,它负责处理服务之间的地址解析和路由。KServe通过创建kserve-addressable-resolver集群角色来参与这一机制。
这个集群角色虽然表面上没有直接的RoleBinding绑定,但实际上它通过Knative的标签选择器机制被动态关联。Knative Serving组件中预定义的ClusterRoleBinding会通过特定的标签选择器(duck.knative.dev/addressable)自动发现并绑定所有符合条件的外部角色,包括KServe创建的这个解析器角色。
这种设计体现了Kubernetes中声明式API和标签选择器的强大能力。KServe不需要显式创建RoleBinding,而是通过遵循Knative定义的标签规范,让Knative的核心组件自动发现和管理这些权限。这种松耦合的设计使得不同组件可以独立演进,同时保持系统整体的协同工作能力。
对于运维人员来说,理解这种设计模式非常重要。在检查集群权限时,不应该仅通过简单的RoleBinding关联来判断角色是否被使用,而需要考虑更复杂的标签选择机制。这也解释了为什么在纯KServe部署中看不到直接的RoleBinding,但当与Knative Serving一起部署时,这些角色会被正确绑定和使用。
这种架构设计展示了云原生系统中组件间协作的优雅方式,通过约定优于配置的原则,减少了显式依赖和硬编码的关联关系,提高了系统的可扩展性和灵活性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00