深度学习Java库(DJL)演示项目最佳实践
2025-04-27 01:44:41作者:盛欣凯Ernestine
1. 项目介绍
深度学习Java库(DJL,Deep Java Library)是一个开源项目,旨在简化在Java应用程序中使用深度学习模型的过程。本项目是一个DJL的演示项目,它提供了如何使用DJL库加载、训练和部署深度学习模型的示例。这个项目对于希望在Java中实现机器学习和深度学习功能的开发者来说,是一个非常好的学习资源。
2. 项目快速启动
环境准备
在开始之前,请确保你已经安装了以下环境:
- Java 8 或更高版本
- Maven 3.6.3 或更高版本
- Python 3.6 或更高版本(用于模型转换)
克隆项目
首先,克隆项目到本地环境:
git clone https://github.com/deepjavalibrary/djl-demo.git
cd djl-demo
构建项目
使用Maven构建项目:
mvn clean install
运行示例
构建完成后,你可以运行项目中的示例来验证安装是否成功。以下是一个简单的示例运行命令:
mvn exec:java -Dexec.mainClass="ai.djl.demo.EnableDemo"
3. 应用案例和最佳实践
以下是一些使用DJL库的常见应用案例和最佳实践:
加载预训练模型
import ai.djl.inference.Predictor;
import ai.djl.modality.nlp.SimpleNlpModel;
import ai.djl.modality.nlp.preprocess.SimpleTokenizer;
import ai.djl.translate.TranslateException;
import ai.djl.translate.Translator;
import ai.djl.translate.translator.nlp.NlpTranslator;
import ai.djl.util.Utils;
public class ModelLoader {
public static void main(String[] args) throws TranslateException {
// 加载预训练的NLP模型
SimpleNlpModel model = SimpleNlpModel.loadPretrainedModel("en");
// 创建翻译器
Translator translator = NlpTranslator.builder()
.setTokenizer(new SimpleTokenizer())
.build();
// 创建预测器
Predictor<String, String> predictor = model.newPredictor(translator);
// 进行预测
String input = "Hello, World!";
String output = predictor.predict(input);
System.out.println(output);
}
}
自定义模型训练
import ai.djl.Model;
import ai.djl.ModelException;
import ai.djl.engine.Engine;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.Shape;
import ai.djl.training.DefaultTrainingConfig;
import ai.djl.training.Trainer;
import ai.djl.training.TrainingConfig;
import ai.djl.training.data.DataSet;
import ai.djl.training.dataiterator.DataIterator;
import ai.djl.training.dataset.ArrayDataset;
import ai.djl.training.evaluator.Evaluator;
import ai.djl.training.listener.TrainingListener;
import ai.djl.training.loss.Loss;
import ai.djl.training.util.TrainingUtils;
public class CustomModelTraining {
public static void main(String[] args) throws ModelException {
// 创建模型
Model model = Model.newInstance("model", Engine.getInstance().newScope());
// 创建数据集
NDManager manager = NDManager.newBaseManager();
DataSet trainingSet = new ArrayDataset(manager, new Shape(1, 784), new Shape(1, 10));
// 创建数据迭代器
DataIterator trainIterator = trainingSet.getData(getTrainingConfig());
// 配置训练
TrainingConfig config = DefaultTrainingConfig.builder()
.addEvaluator(new Evaluator())
.addLoss(Loss.softmaxCrossEntropyLoss())
.build();
// 创建训练器
Trainer trainer = TrainingUtils.train(model, config, trainIterator, null, null, null);
// 保存模型
model.save(manager, "model");
}
}
4. 典型生态项目
DJL库的生态系统包含了许多与深度学习相关的项目,以下是一些典型的项目:
- DJL API:核心API,提供模型的加载、训练和预测功能。
- DJL Examples:包含了使用DJL进行各种深度学习任务的示例代码。
- DJL Model Zoo:预训练模型仓库,提供了多种预训练的模型供用户使用。
- DJL ONNX:ONNX模型的转换和加载支持。
- DJL PyTorch:PyTorch模型的转换和加载支持。
通过这些项目,开发者可以更加方便地使用Java进行深度学习开发。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249