深度学习Java库(DJL)演示项目最佳实践
2025-04-27 06:05:16作者:盛欣凯Ernestine
1. 项目介绍
深度学习Java库(DJL,Deep Java Library)是一个开源项目,旨在简化在Java应用程序中使用深度学习模型的过程。本项目是一个DJL的演示项目,它提供了如何使用DJL库加载、训练和部署深度学习模型的示例。这个项目对于希望在Java中实现机器学习和深度学习功能的开发者来说,是一个非常好的学习资源。
2. 项目快速启动
环境准备
在开始之前,请确保你已经安装了以下环境:
- Java 8 或更高版本
- Maven 3.6.3 或更高版本
- Python 3.6 或更高版本(用于模型转换)
克隆项目
首先,克隆项目到本地环境:
git clone https://github.com/deepjavalibrary/djl-demo.git
cd djl-demo
构建项目
使用Maven构建项目:
mvn clean install
运行示例
构建完成后,你可以运行项目中的示例来验证安装是否成功。以下是一个简单的示例运行命令:
mvn exec:java -Dexec.mainClass="ai.djl.demo.EnableDemo"
3. 应用案例和最佳实践
以下是一些使用DJL库的常见应用案例和最佳实践:
加载预训练模型
import ai.djl.inference.Predictor;
import ai.djl.modality.nlp.SimpleNlpModel;
import ai.djl.modality.nlp.preprocess.SimpleTokenizer;
import ai.djl.translate.TranslateException;
import ai.djl.translate.Translator;
import ai.djl.translate.translator.nlp.NlpTranslator;
import ai.djl.util.Utils;
public class ModelLoader {
public static void main(String[] args) throws TranslateException {
// 加载预训练的NLP模型
SimpleNlpModel model = SimpleNlpModel.loadPretrainedModel("en");
// 创建翻译器
Translator translator = NlpTranslator.builder()
.setTokenizer(new SimpleTokenizer())
.build();
// 创建预测器
Predictor<String, String> predictor = model.newPredictor(translator);
// 进行预测
String input = "Hello, World!";
String output = predictor.predict(input);
System.out.println(output);
}
}
自定义模型训练
import ai.djl.Model;
import ai.djl.ModelException;
import ai.djl.engine.Engine;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.Shape;
import ai.djl.training.DefaultTrainingConfig;
import ai.djl.training.Trainer;
import ai.djl.training.TrainingConfig;
import ai.djl.training.data.DataSet;
import ai.djl.training.dataiterator.DataIterator;
import ai.djl.training.dataset.ArrayDataset;
import ai.djl.training.evaluator.Evaluator;
import ai.djl.training.listener.TrainingListener;
import ai.djl.training.loss.Loss;
import ai.djl.training.util.TrainingUtils;
public class CustomModelTraining {
public static void main(String[] args) throws ModelException {
// 创建模型
Model model = Model.newInstance("model", Engine.getInstance().newScope());
// 创建数据集
NDManager manager = NDManager.newBaseManager();
DataSet trainingSet = new ArrayDataset(manager, new Shape(1, 784), new Shape(1, 10));
// 创建数据迭代器
DataIterator trainIterator = trainingSet.getData(getTrainingConfig());
// 配置训练
TrainingConfig config = DefaultTrainingConfig.builder()
.addEvaluator(new Evaluator())
.addLoss(Loss.softmaxCrossEntropyLoss())
.build();
// 创建训练器
Trainer trainer = TrainingUtils.train(model, config, trainIterator, null, null, null);
// 保存模型
model.save(manager, "model");
}
}
4. 典型生态项目
DJL库的生态系统包含了许多与深度学习相关的项目,以下是一些典型的项目:
- DJL API:核心API,提供模型的加载、训练和预测功能。
- DJL Examples:包含了使用DJL进行各种深度学习任务的示例代码。
- DJL Model Zoo:预训练模型仓库,提供了多种预训练的模型供用户使用。
- DJL ONNX:ONNX模型的转换和加载支持。
- DJL PyTorch:PyTorch模型的转换和加载支持。
通过这些项目,开发者可以更加方便地使用Java进行深度学习开发。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19