深度学习Java库(DJL)演示项目最佳实践
2025-04-27 21:57:51作者:盛欣凯Ernestine
1. 项目介绍
深度学习Java库(DJL,Deep Java Library)是一个开源项目,旨在简化在Java应用程序中使用深度学习模型的过程。本项目是一个DJL的演示项目,它提供了如何使用DJL库加载、训练和部署深度学习模型的示例。这个项目对于希望在Java中实现机器学习和深度学习功能的开发者来说,是一个非常好的学习资源。
2. 项目快速启动
环境准备
在开始之前,请确保你已经安装了以下环境:
- Java 8 或更高版本
- Maven 3.6.3 或更高版本
- Python 3.6 或更高版本(用于模型转换)
克隆项目
首先,克隆项目到本地环境:
git clone https://github.com/deepjavalibrary/djl-demo.git
cd djl-demo
构建项目
使用Maven构建项目:
mvn clean install
运行示例
构建完成后,你可以运行项目中的示例来验证安装是否成功。以下是一个简单的示例运行命令:
mvn exec:java -Dexec.mainClass="ai.djl.demo.EnableDemo"
3. 应用案例和最佳实践
以下是一些使用DJL库的常见应用案例和最佳实践:
加载预训练模型
import ai.djl.inference.Predictor;
import ai.djl.modality.nlp.SimpleNlpModel;
import ai.djl.modality.nlp.preprocess.SimpleTokenizer;
import ai.djl.translate.TranslateException;
import ai.djl.translate.Translator;
import ai.djl.translate.translator.nlp.NlpTranslator;
import ai.djl.util.Utils;
public class ModelLoader {
public static void main(String[] args) throws TranslateException {
// 加载预训练的NLP模型
SimpleNlpModel model = SimpleNlpModel.loadPretrainedModel("en");
// 创建翻译器
Translator translator = NlpTranslator.builder()
.setTokenizer(new SimpleTokenizer())
.build();
// 创建预测器
Predictor<String, String> predictor = model.newPredictor(translator);
// 进行预测
String input = "Hello, World!";
String output = predictor.predict(input);
System.out.println(output);
}
}
自定义模型训练
import ai.djl.Model;
import ai.djl.ModelException;
import ai.djl.engine.Engine;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.Shape;
import ai.djl.training.DefaultTrainingConfig;
import ai.djl.training.Trainer;
import ai.djl.training.TrainingConfig;
import ai.djl.training.data.DataSet;
import ai.djl.training.dataiterator.DataIterator;
import ai.djl.training.dataset.ArrayDataset;
import ai.djl.training.evaluator.Evaluator;
import ai.djl.training.listener.TrainingListener;
import ai.djl.training.loss.Loss;
import ai.djl.training.util.TrainingUtils;
public class CustomModelTraining {
public static void main(String[] args) throws ModelException {
// 创建模型
Model model = Model.newInstance("model", Engine.getInstance().newScope());
// 创建数据集
NDManager manager = NDManager.newBaseManager();
DataSet trainingSet = new ArrayDataset(manager, new Shape(1, 784), new Shape(1, 10));
// 创建数据迭代器
DataIterator trainIterator = trainingSet.getData(getTrainingConfig());
// 配置训练
TrainingConfig config = DefaultTrainingConfig.builder()
.addEvaluator(new Evaluator())
.addLoss(Loss.softmaxCrossEntropyLoss())
.build();
// 创建训练器
Trainer trainer = TrainingUtils.train(model, config, trainIterator, null, null, null);
// 保存模型
model.save(manager, "model");
}
}
4. 典型生态项目
DJL库的生态系统包含了许多与深度学习相关的项目,以下是一些典型的项目:
- DJL API:核心API,提供模型的加载、训练和预测功能。
- DJL Examples:包含了使用DJL进行各种深度学习任务的示例代码。
- DJL Model Zoo:预训练模型仓库,提供了多种预训练的模型供用户使用。
- DJL ONNX:ONNX模型的转换和加载支持。
- DJL PyTorch:PyTorch模型的转换和加载支持。
通过这些项目,开发者可以更加方便地使用Java进行深度学习开发。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76