OR-Tools中Pell方程求解的整数溢出问题分析
2025-05-19 15:22:26作者:牧宁李
问题背景
在使用OR-Tools约束求解器求解Pell方程时,开发者发现当D=1时,求解器返回了一个明显错误的解:x=67108865,y=67108865。这个解显然不满足x² - D*y² = 1的基本条件。
Pell方程简介
Pell方程是一类形如x² - D*y² = 1的Diophantine方程,其中D是一个非平方正整数。这类方程在数论中有重要地位,其最小正整数解被称为基本解。
问题重现
开发者提供的Python代码使用OR-Tools的约束求解器来寻找Pell方程的解。代码设置了x和y的范围为0到5×10⁸,并添加了x>0和y>0的约束条件。然而,当D=1时,求解器返回的解不满足原方程。
根本原因分析
OR-Tools的约束求解器内部使用int64类型来存储整数值。在计算过程中,当变量值较大时,可能导致整数溢出:
- 当x和y都等于67108865时
- x² = 67108865² = 4,503,599,827,009,025
- y² = 67108865² = 4,503,599,827,009,025
- x² - y² = 0 ≠ 1
这表明求解器在内部计算时可能没有正确检测到整数溢出,导致返回了错误的解。
解决方案建议
-
使用CP-SAT求解器:OR-Tools的CP-SAT求解器能更好地处理大整数运算,并会在模型无效时返回相应提示。
-
限制变量范围:根据具体问题需求,适当减小变量的取值范围,避免接近int64的上限。
-
添加验证步骤:在获取解后,添加验证步骤确保解满足原方程。
CP-SAT实现示例
以下是使用CP-SAT求解器实现Pell方程求解的改进代码:
from ortools.sat.python import cp_model
def solve_pell_equation(D):
model = cp_model.CpModel()
max_limit = 5*10**8
x = model.new_int_var(1, max_limit, "x")
y = model.new_int_var(1, max_limit, "y")
x_square = model.new_int_var(1, max_limit * max_limit, "x_square")
y_square = model.new_int_var(1, max_limit * max_limit, "y_square")
model.add_multiplication_equality(x_square, x, x)
model.add_multiplication_equality(y_square, y, y)
model.add(x_square - D*y_square == 1)
solver = cp_model.CpSolver()
result = solver.solve(model)
if result == cp_model.OPTIMAL:
print(f"x={solver.value(x)} y={solver.value(y)} D={D}")
assert solver.value(x)**2 - D*(solver.value(y)**2) == 1
性能考虑
需要注意的是,Pell方程的求解在D较大时可能会变得相当耗时,因为:
- 基本解的大小可能随着D的增加而急剧增大
- 整数平方运算会产生非常大的中间值
- 搜索空间随着max_limit的增加呈平方级增长
结论
在使用OR-Tools求解涉及大整数运算的问题时,开发者应当:
- 了解底层数据类型的限制
- 考虑使用更适合的求解器(如CP-SAT)
- 添加结果验证机制
- 根据问题特性合理设置变量范围
通过采取这些措施,可以避免整数溢出导致的错误解,确保求解结果的正确性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137