【亲测免费】 知识图谱注意力网络KGAT快速入门与实践指南
2026-01-16 09:25:11作者:范靓好Udolf
knowledge_graph_attention_network
KGAT: Knowledge Graph Attention Network for Recommendation, KDD2019
1. 项目介绍
**知识图谱注意力网络(KGAT)**是Xiang Wang等人在2019年KDD大会上提出的用于推荐系统的深度学习模型。该模型旨在利用知识图谱丰富的语义信息来增强用户与物品之间的关联,提升推荐的准确性、多样性和可解释性。在传统的基于用户-物品交互的模型基础上,KGAT通过引入知识图谱,打破了独立交互假设,捕捉更高维度的实体间连接。
2. 项目快速启动
首先确保安装了TensorFlow和Git:
pip install tensorflow
pip install git+https://github.com/xiangwang1223/knowledge_graph_attention_network.git
克隆仓库并进入项目目录:
git clone https://github.com/xiangwang1223/knowledge_graph_attention_network.git
cd knowledge_graph_attention_network
准备数据集,这里以示例数据为例:
python preprocess.py --dataset ml-1m # 使用MovieLens 1M数据集
训练模型:
python main.py --dataset ml-1m --model kgat --use_kg True --log_step 10 --eval_step 100 --gpu 0
以上命令将在GPU 0上训练KGAT模型,每10步打印一次日志,每100步进行一次评估。
3. 应用案例和最佳实践
示例案例
在电影推荐场景中,KGAT可以结合电影类型、演员等实体信息,为用户提供更个性化的推荐。例如,某用户喜欢科幻片,KGAT不仅考虑用户过去观看过的科幻片,还会考虑与科幻相关的导演、演员的其他作品。
最佳实践
- 数据预处理:根据实际数据集调整数据清洗和转换步骤。
- 参数调优:尝试不同的超参数组合,如学习率、隐藏层数、注意力系数等,以优化模型性能。
- 模型融合:与其他推荐系统算法结合,如协同过滤,实现集成推荐效果。
4. 典型生态项目
- TensorFlow ecosystem: KGAT是基于TensorFlow构建的,可以无缝整合到TensorFlow生态系统,利用其强大的计算能力和模型保存功能。
- Open Source Recommendation Systems: 该项目可以作为开源推荐系统的一部分,与LibRec或DeepRecSys等平台集成。
- Knowledge Graph Libraries: 如PyTorch-KGE和Numpy-kg,可以辅助构建和管理知识图谱。
本指南提供了快速启动和初步实践KGAT的基础步骤,但深入理解和应用可能需要进一步研究项目文档和相关论文。如有疑问或问题,建议查阅项目README及作者提供的详细说明。
knowledge_graph_attention_network
KGAT: Knowledge Graph Attention Network for Recommendation, KDD2019
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896