Uni4D 项目最佳实践教程
2025-05-30 18:04:30作者:郁楠烈Hubert
1. 项目介绍
Uni4D 是一个开源项目,旨在通过单段视频实现 4D 建模。它统一了多种视觉基础模型,如深度估计、动态掩码等,以从单个视频中重建出四维模型。该项目由 David Yifan Yao 等人开发,并在 CVPR 2025 上发表。
2. 项目快速启动
环境准备
首先,确保您的环境中已安装了 CUDA Toolkit 12.1。然后,按照以下步骤进行操作:
# 克隆项目并递归下载子模块
git clone --recursive https://github.com/Davidyao99/uni4d.git
# 创建并激活虚拟环境
conda create -n uni4d python=3.10
conda activate uni4d
# 安装依赖
bash scripts/install.sh
下载模型权重
# 下载视觉基础模型的权重
bash scripts/download_weights.sh
配置 OpenAI API
Uni4D 的预处理需要调用 GPT,因此需要一个具有信用额度的 OpenAI 账户。获取您的 API 密钥并将其设置为环境变量:
echo "OPENAI_API_KEY=sk-your_api_key_here" > .env
运行示例
项目提供了一个示例脚本,用于演示如何处理一个视频序列:
# 运行示例
bash scripts/demo.sh
输出目录结构如下:
data/demo/
└── lady-running/ # 示例序列名
├── rgb/ # 原始 RGB 图像
│ ├── 00000.jpg # 顺序 RGB 帧图像
│ └── ...
│
├── deva/ # DEVA 模型输出
│ ├── pred.json # 预测数据
│ ├── args.txt # 参数
│ ├── Annotations/ # 注解掩码
│ │ ├── 00000.png
│ │ └── ...
│ └── Visualizations/ # 可视化结果
│ ├── 00000.jpg
│ └── ...
│
├── ram/ # RAM 模型检测结果
│ └── tags.json # 包含 RAM 检测的类、GPT 输出和过滤后的类
│
├── unidepth/ # 深度估计结果
│ ├── depth_vis/ # 深度图可视化
│ │ ├── 00000.png
│ │ └── ...
│ ├── depth.npy # 原始深度数据
│ └── intrinsics.npy # 相机内参
│
├── gsm2/ # GSM2 模型输出
│ ├── mask/ # 分割掩码
│ │ ├── 00000.png # 二进制掩码图像
│ │ ├── 00000.json # 元数据/参数
│ │ └── ...
│ └── vis/ # 掩码可视化
│ ├── 00000.jpg
│ └── ...
│
├── cotrackerv3_F_G/ # Cotracker 输出(F=帧,G=网格大小)
│ ├── results.npz # 轨迹数据
│ └── vis/ # Cotracker 可视化
│ ├── 00000.png
│ └── ...
│
└── uni4d/ # Uni4D 模型输出
└── experiment_name/ # 实验名称
├── fused_4d.npz # 融合的 4D 表示数据
├── timer.txt # 每个阶段的运行时间
├── training_info.log # 训练日志
└── *.npz # 原始结果
3. 应用案例和最佳实践
自定义预处理
Uni4D 允许您使用自定义的深度估计和动态掩码。将结果保存在以下格式:
data/demo/
└── lady-running/ # 示例序列名
├── rgb/ # 原始 RGB 图像
│ ├── 00000.jpg # 顺序 RGB 帧图像
│ └── ...
├── custom_depth/ # 自定义深度估计结果
│ ├── depth.npy # 原始深度数据保存为 F x 1 x H x W
│ └── intrinsics.npy # 相机内参(初始化 Uni4D 时保存为 3x3 矩阵)
├── custom_segmentation/ # 自定义分割结果
│ ├── Annotations/ # 注解掩码
│ │ ├── 00000.png # 轨迹 ID 为单通道,每个轨迹为唯一 RGB 的三通道
│ │ └── ...
...
运行 Uni4D 优化时,使用以下参数来使用您的自定义预处理结果:
python ./uni4d/run.py --config ./uni4d/config/config_demo.yaml --depth_net <custom_depth> --dyn_mask_dir <custom_segmentation>
4. 典型生态项目
Uni4D 项目依赖于以下几个典型的生态项目:
- CasualSAM: Uni4D 的代码库基于此项目。
- MonST3R: Uni4D 的评估和数据集准备基于此项目。
- Tracking-Anything-with-DEVA: Uni4D 的预处理依赖于此项目。
- Grounded-Sam-2: Uni4D 的预处理依赖于此项目。
- CotrackerV3: Uni4D 的预处理依赖于此项目。
- Unidepth: Uni4D 的预处理依赖于此项目。
- Recognize-Anything: Uni4D 的预处理依赖于此项目。
以上是 Uni4D 项目的最佳实践教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
相关项目推荐
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp课程页面空白问题的技术分析与解决方案4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析
最新内容推荐
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
446
367

React Native鸿蒙化仓库
C++
97
178

openGauss kernel ~ openGauss is an open source relational database management system
C++
52
120

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
274
483

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
88
245

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
637
77
IImageKnife
专门为OpenHarmony打造的一款图像加载缓存库,致力于更高效、更轻便、更简单
ArkTS
20
12

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
347
34

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
344
233