Pico Ducky设备数据存储问题的解决方案
问题背景
在使用Pico Ducky设备执行自动化脚本时,用户遇到了无法直接将数据保存到D盘根目录的问题。具体表现为当尝试执行netsh wlan show profiles > D:\命令时,系统返回"Access to the path 'D:' is denied"的错误提示。
问题分析
这个问题实际上涉及Windows系统的权限管理和文件系统访问限制。在Windows系统中,直接向驱动器根目录写入文件通常需要管理员权限,这是出于系统安全性的考虑。此外,Pico Ducky设备本身作为USB输入设备模拟器,其设计初衷主要是模拟键盘输入而非直接进行文件存储操作。
解决方案
经过技术探索,我们找到了一个更合理的解决方案:通过Pico Ducky设备执行PowerShell脚本,然后将数据保存到设备自身的存储空间中。这种方法更加安全且符合设备的设计理念。
实现步骤
-
识别Pico Ducky设备:通过PowerShell脚本检测挂载的驱动器,寻找卷标为"DUCKY"的设备。
-
数据收集与存储:将收集的系统信息保存到已识别的Pico Ducky设备存储中。
核心代码实现
# 查找名为"DUCKY"的驱动器
function Get-DuckyDrive {
$allDrives = Get-WmiObject -Class Win32_LogicalDisk | Where-Object { $_.DriveType -eq 2 -or $_.DriveType -eq 3 } # 2 = 可移动设备, 3 = 固定设备
foreach ($drive in $allDrives) {
if ($drive.VolumeName -eq "DUCKY") {
return $drive.DeviceID
}
}
return $null # 如果未找到名为"DUCKY"的驱动器则返回null
}
# 搜索"DUCKY"驱动器并保存系统信息
$duckyDrive = Get-DuckyDrive
if ($duckyDrive) {
$TargetFilePath = "$duckyDrive\$FileName"
$systemInfo | Out-File -FilePath $TargetFilePath
}
技术要点
-
设备识别:通过WMI查询系统逻辑磁盘信息,筛选出可移动设备或固定设备,然后匹配特定卷标。
-
安全存储:将数据保存到设备自身的存储空间,避免了系统权限问题,同时也使数据随设备移动更加方便。
-
扩展性:此方法可以轻松扩展为从远程服务器获取脚本并回传数据,实现更复杂的自动化任务。
最佳实践建议
-
在使用Pico Ducky设备进行数据收集时,优先考虑将数据存储在设备自身而非系统磁盘。
-
对于需要管理员权限的操作,可以考虑在脚本开始时请求提权,但要注意安全性影响。
-
实现错误处理机制,确保在设备未正确挂载时脚本能够优雅退出。
-
考虑数据加密,特别是当收集敏感信息时,以保护数据安全。
这种方法不仅解决了原始问题,还提供了更符合安全规范的解决方案,同时也为后续功能扩展奠定了基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00