YARA项目PE模块深度解析:Windows可执行文件特征检测指南
2025-07-10 20:01:00作者:邬祺芯Juliet
一、PE模块概述
YARA项目的PE模块是专门为分析Windows可执行文件(PE格式)设计的强大工具集。该模块通过暴露PE文件头的各种属性和特性,使安全研究人员能够编写更精确的检测规则。PE模块不仅支持基础特征检查,还能深入分析PE文件的结构细节,是恶意软件分析和分类的利器。
二、基础检测示例
让我们从几个典型用例开始,快速了解PE模块的基本能力:
import "pe"
// 检测单节区PE文件(常见于简单恶意程序)
rule single_section {
condition: pe.number_of_sections == 1
}
// 检测控制面板小程序
rule control_panel_applet {
condition: pe.exports("CPlApplet")
}
// 检测DLL文件
rule is_dll {
condition: pe.characteristics & pe.DLL
}
三、核心功能详解
3.1 文件头特征检测
PE模块提供了对PE文件头的完整访问能力:
- 机器类型检测:通过
pe.machine可识别文件架构(如pe.MACHINE_AMD64) - 子系统识别:
pe.subsystem可区分GUI/CUI等子系统类型 - 时间戳分析:
pe.timestamp获取编译时间戳 - 校验和验证:
pe.checksum与pe.calculate_checksum()配合可检测文件篡改
3.2 节区(Section)分析
节区是PE文件的核心组成部分,PE模块提供了详细访问接口:
rule text_section_check {
condition:
pe.sections[0].name == ".text" and
pe.sections[0].characteristics & pe.SECTION_MEM_EXECUTE
}
每个节区对象包含:
- 名称(name)、虚拟地址/大小(virtual_address/virtual_size)
- 原始数据偏移/大小(raw_data_offset/raw_data_size)
- 特征标志(characteristics),可检测可执行、可写等属性
3.3 资源(Resource)检测
PE资源是恶意软件常利用的藏身之处:
rule rdata_resource_check {
condition:
pe.resources[0].type == pe.RESOURCE_TYPE_RCDATA and
pe.resources[0].size > 1MB
}
资源对象提供:
- 类型检测(图标、字符串、版本信息等20+种类型)
- 多语言支持(通过language/language_string)
- 详细位置信息(offset/length)
3.4 数据目录(Data Directory)分析
PE文件的数据目录包含关键信息:
rule has_debug_info {
condition:
pe.data_directories[pe.IMAGE_DIRECTORY_ENTRY_DEBUG].size > 0
}
重要目录包括:
- 导出表(EXPORT)
- 导入表(IMPORT)
- 重定位表(BASERELOC)
- TLS目录等
四、高级特性应用
4.1 版本信息检测
rule microsoft_product {
condition:
pe.version_info["CompanyName"] contains "Microsoft" and
pe.version_info["ProductName"] startswith "Microsoft"
}
可检测的版本信息字段包括:
- FileVersion/ProductVersion
- LegalCopyright
- OriginalFilename等
4.2 数字签名验证
rule valid_sig {
condition:
pe.number_of_signatures > 0 and
pe.signatures[0].issuer contains "VeriSign"
}
签名对象提供:
- 颁发者信息(issuer)
- 指纹(thumbprint)等
4.3 动态行为特征
rule uses_aslr {
condition:
pe.dll_characteristics & pe.DYNAMIC_BASE
}
rule uses_dep {
condition:
pe.dll_characteristics & pe.NX_COMPAT
}
可检测的安全特性:
- ASLR(DYNAMIC_BASE)
- DEP(NX_COMPAT)
- 安全SEH(NO_SEH)等
五、最佳实践建议
-
组合检测:结合多个特征提高准确性
rule suspicious_dll { condition: pe.characteristics & pe.DLL and pe.number_of_sections == 3 and pe.sections[0].name == ".text" and pe.version_info["OriginalFilename"] == "" } -
性能优化:先进行快速检查再深入分析
rule complex_check { condition: pe.is_pe and // 快速检查 /* 后续详细检查 */ } -
特征优先级:将高区分度的特征放在条件前面
六、总结
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1