Burr项目中的输入参数API设计解析
2025-07-10 22:01:57作者:谭伦延
概述
在Burr这个工作流管理框架中,输入参数的处理是一个关键设计点。本文将深入分析Burr框架中关于动作(Action)输入参数的设计思路和实现方案。
输入参数的需求背景
在构建工作流应用时,我们经常需要从外部获取输入参数来驱动流程执行。传统方式可能会直接操作状态(State)对象,但这会带来以下问题:
- 破坏了动作的封装性
- 难以进行单元测试
- 缺乏明确的参数声明和验证机制
Burr框架提出了一个清晰的解决方案,通过声明式的方式定义动作所需的输入参数。
核心设计思想
Burr采用了函数式编程的思想来处理输入参数:
- 显式声明:每个动作需要明确声明它依赖哪些输入参数
- 类型安全:通过函数参数提供类型提示
- 状态隔离:输入参数与状态管理分离,避免副作用
API设计详解
动作定义
@action(
reads=[], # 读取的状态字段
writes=["question"], # 写入的状态字段
inputs=["question"] # 需要的输入参数
)
def human_converse_placeholder(state: State, question: str) -> Tuple[dict, State]:
# 处理逻辑
return {"question": question}, state.update(question=question)
这种设计具有以下优点:
- 明确声明了动作依赖的输入参数
- 框架会自动验证参数是否提供
- 保持了函数的可测试性
执行控制
在执行层面,Burr提供了灵活的输入参数传递方式:
inputs = None
while True:
current_action, prior_result, current_state = app.step(inputs=inputs)
inputs = None
if action.name == "human_converse":
user_question = input("What is your next question: ")
inputs = {"question": user_question}
if action.name == "terminal":
break
这种设计允许:
- 动态获取输入参数
- 参数只在需要时提供
- 清晰的参数传递流程
与绑定(Bind)的关系
Burr中的绑定机制(Bind)用于固定某些参数值,而输入参数API则用于处理那些需要在运行时动态提供的参数。两者可以协同工作:
- 绑定:固定不变的参数
- 输入参数:运行时动态提供的参数
执行模式的支持
Burr框架支持多种执行模式,输入参数的处理也相应有所不同:
- 单步执行(step):输入参数仅应用于当前步骤
- 完整执行(run/iterate):输入参数应用于整个执行范围
这种灵活性使得Burr能够适应各种复杂的工作流场景。
实现考量
在实现输入参数API时,需要考虑以下关键点:
- 参数验证:确保所有声明的输入参数都已提供
- 参数传递:在动作调用时正确注入参数
- 错误处理:友好的错误提示,帮助开发者快速定位问题
- 文档生成:基于输入参数声明自动生成文档
总结
Burr框架的输入参数API设计体现了以下核心原则:
- 显式优于隐式:明确声明依赖关系
- 隔离性:输入参数与状态管理分离
- 灵活性:支持多种执行模式和参数传递方式
- 可测试性:保持动作的纯函数特性
这种设计使得Burr在处理复杂工作流时既保持了简单性,又提供了足够的灵活性,是框架设计中的一个亮点。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137