Burr项目中的输入参数API设计解析
2025-07-10 02:37:39作者:谭伦延
概述
在Burr这个工作流管理框架中,输入参数的处理是一个关键设计点。本文将深入分析Burr框架中关于动作(Action)输入参数的设计思路和实现方案。
输入参数的需求背景
在构建工作流应用时,我们经常需要从外部获取输入参数来驱动流程执行。传统方式可能会直接操作状态(State)对象,但这会带来以下问题:
- 破坏了动作的封装性
- 难以进行单元测试
- 缺乏明确的参数声明和验证机制
Burr框架提出了一个清晰的解决方案,通过声明式的方式定义动作所需的输入参数。
核心设计思想
Burr采用了函数式编程的思想来处理输入参数:
- 显式声明:每个动作需要明确声明它依赖哪些输入参数
- 类型安全:通过函数参数提供类型提示
- 状态隔离:输入参数与状态管理分离,避免副作用
API设计详解
动作定义
@action(
reads=[], # 读取的状态字段
writes=["question"], # 写入的状态字段
inputs=["question"] # 需要的输入参数
)
def human_converse_placeholder(state: State, question: str) -> Tuple[dict, State]:
# 处理逻辑
return {"question": question}, state.update(question=question)
这种设计具有以下优点:
- 明确声明了动作依赖的输入参数
- 框架会自动验证参数是否提供
- 保持了函数的可测试性
执行控制
在执行层面,Burr提供了灵活的输入参数传递方式:
inputs = None
while True:
current_action, prior_result, current_state = app.step(inputs=inputs)
inputs = None
if action.name == "human_converse":
user_question = input("What is your next question: ")
inputs = {"question": user_question}
if action.name == "terminal":
break
这种设计允许:
- 动态获取输入参数
- 参数只在需要时提供
- 清晰的参数传递流程
与绑定(Bind)的关系
Burr中的绑定机制(Bind)用于固定某些参数值,而输入参数API则用于处理那些需要在运行时动态提供的参数。两者可以协同工作:
- 绑定:固定不变的参数
- 输入参数:运行时动态提供的参数
执行模式的支持
Burr框架支持多种执行模式,输入参数的处理也相应有所不同:
- 单步执行(step):输入参数仅应用于当前步骤
- 完整执行(run/iterate):输入参数应用于整个执行范围
这种灵活性使得Burr能够适应各种复杂的工作流场景。
实现考量
在实现输入参数API时,需要考虑以下关键点:
- 参数验证:确保所有声明的输入参数都已提供
- 参数传递:在动作调用时正确注入参数
- 错误处理:友好的错误提示,帮助开发者快速定位问题
- 文档生成:基于输入参数声明自动生成文档
总结
Burr框架的输入参数API设计体现了以下核心原则:
- 显式优于隐式:明确声明依赖关系
- 隔离性:输入参数与状态管理分离
- 灵活性:支持多种执行模式和参数传递方式
- 可测试性:保持动作的纯函数特性
这种设计使得Burr在处理复杂工作流时既保持了简单性,又提供了足够的灵活性,是框架设计中的一个亮点。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136