Burr项目中的输入参数API设计解析
2025-07-10 19:06:11作者:谭伦延
概述
在Burr这个工作流管理框架中,输入参数的处理是一个关键设计点。本文将深入分析Burr框架中关于动作(Action)输入参数的设计思路和实现方案。
输入参数的需求背景
在构建工作流应用时,我们经常需要从外部获取输入参数来驱动流程执行。传统方式可能会直接操作状态(State)对象,但这会带来以下问题:
- 破坏了动作的封装性
- 难以进行单元测试
- 缺乏明确的参数声明和验证机制
Burr框架提出了一个清晰的解决方案,通过声明式的方式定义动作所需的输入参数。
核心设计思想
Burr采用了函数式编程的思想来处理输入参数:
- 显式声明:每个动作需要明确声明它依赖哪些输入参数
- 类型安全:通过函数参数提供类型提示
- 状态隔离:输入参数与状态管理分离,避免副作用
API设计详解
动作定义
@action(
reads=[], # 读取的状态字段
writes=["question"], # 写入的状态字段
inputs=["question"] # 需要的输入参数
)
def human_converse_placeholder(state: State, question: str) -> Tuple[dict, State]:
# 处理逻辑
return {"question": question}, state.update(question=question)
这种设计具有以下优点:
- 明确声明了动作依赖的输入参数
- 框架会自动验证参数是否提供
- 保持了函数的可测试性
执行控制
在执行层面,Burr提供了灵活的输入参数传递方式:
inputs = None
while True:
current_action, prior_result, current_state = app.step(inputs=inputs)
inputs = None
if action.name == "human_converse":
user_question = input("What is your next question: ")
inputs = {"question": user_question}
if action.name == "terminal":
break
这种设计允许:
- 动态获取输入参数
- 参数只在需要时提供
- 清晰的参数传递流程
与绑定(Bind)的关系
Burr中的绑定机制(Bind)用于固定某些参数值,而输入参数API则用于处理那些需要在运行时动态提供的参数。两者可以协同工作:
- 绑定:固定不变的参数
- 输入参数:运行时动态提供的参数
执行模式的支持
Burr框架支持多种执行模式,输入参数的处理也相应有所不同:
- 单步执行(step):输入参数仅应用于当前步骤
- 完整执行(run/iterate):输入参数应用于整个执行范围
这种灵活性使得Burr能够适应各种复杂的工作流场景。
实现考量
在实现输入参数API时,需要考虑以下关键点:
- 参数验证:确保所有声明的输入参数都已提供
- 参数传递:在动作调用时正确注入参数
- 错误处理:友好的错误提示,帮助开发者快速定位问题
- 文档生成:基于输入参数声明自动生成文档
总结
Burr框架的输入参数API设计体现了以下核心原则:
- 显式优于隐式:明确声明依赖关系
- 隔离性:输入参数与状态管理分离
- 灵活性:支持多种执行模式和参数传递方式
- 可测试性:保持动作的纯函数特性
这种设计使得Burr在处理复杂工作流时既保持了简单性,又提供了足够的灵活性,是框架设计中的一个亮点。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869